Generalized iteration of forcing
HTML articles powered by AMS MathViewer
- by M. Groszek and T. Jech
- Trans. Amer. Math. Soc. 324 (1991), 1-26
- DOI: https://doi.org/10.1090/S0002-9947-1991-0946221-X
- PDF | Request permission
Abstract:
Generalized iteration extends the usual notion of iterated forcing from iterating along an ordinal to iterating along any partially ordered set. We consider a class of forcings called perfect tree forcing. The class includes Axiom A forcings with a finite splitting property, such as Cohen, Laver, Mathias, Miller, Prikry-Silver, and Sacks forcings. If $\mathcal {P}$ is a perfect tree forcing, there is a decomposition $\mathcal {Q} * \mathcal {R}$ such that $\mathcal {Q}$ is countably closed, $\mathcal {R}$ has the countable chain condition, and $\mathcal {Q} * \mathcal {R}$ adds a $\mathcal {P}$-generic set. Theorem. The mixed-support generalized iteration of perfect tree forcing decompositions along any well-founded partial order preserves ${\omega _1}$. Theorem. If ${\text {ZFC}}$ is consistent, so is ${\text {ZFC + }}{{\text {2}}^\omega }$ is arbitrarily large + whenever $\mathcal {P}$ is a perfect tree forcing and $\mathcal {D}$ is a collection of ${\omega _1}$ dense subsets of $\mathcal {P}$, there is a $\mathcal {D}$-generic filter on $\mathcal {P}$.References
- James E. Baumgartner, Iterated forcing, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 1–59. MR 823775, DOI 10.1017/CBO9780511758867.002
- James E. Baumgartner and Richard Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), no. 3, 271–288. MR 556894, DOI 10.1016/0003-4843(79)90010-X
- Paul J. Cohen, Set theory and the continuum hypothesis, W. A. Benjamin, Inc., New York-Amsterdam, 1966. MR 0232676
- Keith J. Devlin, The Yorkshireman’s guide to proper forcing, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 60–115. MR 823776, DOI 10.1017/CBO9780511758867.003
- William B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139–178. MR 269497, DOI 10.1016/0003-4843(70)90012-4
- Serge Grigorieff, Combinatorics on ideals and forcing, Ann. Math. Logic 3 (1971), no. 4, 363–394. MR 297560, DOI 10.1016/0003-4843(71)90011-8 M. Groszek, $\omega _1^*$ as an initial segment of the degrees of constructibility. M. Groszek and R. Laver, Finite groups of ${\text {OD}}$-conjugates.
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Ronald Jensen, Definable sets of minimal degree, Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968) North-Holland, Amsterdam, 1970, pp. 122–128. MR 0306002
- R. B. Jensen and R. M. Solovay, Some applications of almost disjoint sets, Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968) North-Holland, Amsterdam, 1970, pp. 84–104. MR 0289291 K. Kunen, Set theory, Stud. Logic Foundations Math., vol. 102, North-Holland, Amsterdam, 1980.
- Richard Laver, On the consistency of Borel’s conjecture, Acta Math. 137 (1976), no. 3-4, 151–169. MR 422027, DOI 10.1007/BF02392416
- D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), no. 2, 143–178. MR 270904, DOI 10.1016/0003-4843(70)90009-4
- A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), no. 1, 59–111. MR 491197, DOI 10.1016/0003-4843(77)90006-7 A. Miller, Rational perfect set forcing.
- Gerald E. Sacks, Forcing with perfect closed sets, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 331–355. MR 0276079
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
- R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin’s problem, Ann. of Math. (2) 94 (1971), 201–245. MR 294139, DOI 10.2307/1970860 W. H. Woodin, The consistency of Borel’s conjecture with large continuum.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 324 (1991), 1-26
- MSC: Primary 03E40; Secondary 03E35, 03E50
- DOI: https://doi.org/10.1090/S0002-9947-1991-0946221-X
- MathSciNet review: 946221