The decompositions of Schur complexes
HTML articles powered by AMS MathViewer
- by Hyoung J. Ko
- Trans. Amer. Math. Soc. 324 (1991), 255-270
- DOI: https://doi.org/10.1090/S0002-9947-1991-0986029-2
- PDF | Request permission
Abstract:
This paper presents a method for finding the characteristic-free Pieri type decompositions of Schur modules, Weyl modules, and Schur complexes. We also introduce several new combinatorial rules for computing the Littlewood-Richardson coefficients.References
- Kaan Akin and David A. Buchsbaum, Characteristic-free representation theory of the general linear group, Adv. in Math. 58 (1985), no. 2, 149–200. MR 814749, DOI 10.1016/0001-8708(85)90115-X
- Kaan Akin, David A. Buchsbaum, and Jerzy Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982), no. 3, 207–278. MR 658729, DOI 10.1016/0001-8708(82)90039-1
- Marilena Barnabei and Andrea Brini, The Littlewood-Richardson rule for co-Schur modules, Adv. in Math. 67 (1988), no. 2, 143–173. MR 925265, DOI 10.1016/0001-8708(88)90039-4
- C. de Concini, David Eisenbud, and C. Procesi, Young diagrams and determinantal varieties, Invent. Math. 56 (1980), no. 2, 129–165. MR 558865, DOI 10.1007/BF01392548
- James A. Green, Polynomial representations of $\textrm {GL}_{n}$, Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin-New York, 1980. MR 606556 H. J. Ko, Thesis, Brandeis University, 1987.
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598 H. A. Nielsen, Tensor functors of complexes, Aarhus University Preprint Series No. 15, 1978.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 324 (1991), 255-270
- MSC: Primary 05A17; Secondary 13D25, 20C30
- DOI: https://doi.org/10.1090/S0002-9947-1991-0986029-2
- MathSciNet review: 986029