On the characteristic classes of actions of lattices in higher rank Lie groups
HTML articles powered by AMS MathViewer
- by Garrett Stuck
- Trans. Amer. Math. Soc. 324 (1991), 181-200
- DOI: https://doi.org/10.1090/S0002-9947-1991-0986031-0
- PDF | Request permission
Abstract:
We show that under certain assumptions, the measurable cohomology class of the linear holonomy cocycle of a foliation yields information about the characteristic classes of the foliation. Combined with the results of a previous paper, this yields vanishing theorems for characteristic classes of certain actions of lattices in higher rank semisimple Lie groups.References
- Raoul Bott, On the characteristic classes of groups of diffeomorphisms, Enseign. Math. (2) 23 (1977), no. 3-4, 209–220. MR 488080
- Raoul Bott, On a topological obstruction to integrability, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 127–131. MR 0266248
- R. Bott and A. Haefliger, On characteristic classes of $\Gamma$-foliations, Bull. Amer. Math. Soc. 78 (1972), 1039–1044. MR 307250, DOI 10.1090/S0002-9904-1972-13101-X G. Duminy, L’invariant de Godbillon-Vey d’un feuilletage se localise dans les feuilles ressort, preprint (1982).
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4 A. Haefliger, Sur les classes caractéristiques des feuilletages, Sém. Bourbaki, no. 412 (1971/72). J. Heitsch and S. Hurder, Secondary classes, Weil measures and the geometry of foliations, J. Differential Geom. 4 (1984).
- S. Hurder and A. Katok, Ergodic theory and Weil measures for foliations, Ann. of Math. (2) 126 (1987), no. 2, 221–275. MR 908148, DOI 10.2307/1971401
- Franz W. Kamber and Philippe Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Mathematics, Vol. 493, Springer-Verlag, Berlin-New York, 1975. MR 0402773
- H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977), no. 5, 509–541. MR 442975, DOI 10.1002/cpa.3160300502 G. A. Margulis, Discrete groups of motions of manifolds of non-positive curvature, Amer. Math. Soc. Transl. 109 (1977), 33-45.
- G. D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc. 14 (1955), 31–54. MR 69829
- Arlan Ramsay, Virtual groups and group actions, Advances in Math. 6 (1971), 253–322 (1971). MR 281876, DOI 10.1016/0001-8708(71)90018-1
- Garrett Stuck, Cocycles of ergodic group actions and vanishing of first cohomology for $S$-arithmetic groups, Amer. J. Math. 113 (1991), no. 1, 1–23. MR 1087799, DOI 10.2307/2374819
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
- Robert J. Zimmer, Ergodic actions of semisimple groups and product relations, Ann. of Math. (2) 118 (1983), no. 1, 9–19. MR 707158, DOI 10.2307/2006951 —, On the algebraic hull of an automorphism group of a principal bundle, preprint (January, 1989).
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 324 (1991), 181-200
- MSC: Primary 57R30; Secondary 22E40, 57R20, 58H10
- DOI: https://doi.org/10.1090/S0002-9947-1991-0986031-0
- MathSciNet review: 986031