Optimal Hölder and $L^ p$ estimates for $\overline \partial _ b$ on the boundaries of real ellipsoids in $\textbf {C}^ n$
HTML articles powered by AMS MathViewer
- by Mei-Chi Shaw
- Trans. Amer. Math. Soc. 324 (1991), 213-234
- DOI: https://doi.org/10.1090/S0002-9947-1991-1005084-7
- PDF | Request permission
Abstract:
Let $D$ be a real ellipsoid in ${{\mathbf {C}}^n},n \geq 3$, with defining function $\rho (z) = \sum \nolimits _{k = 1}^n {(x_k^{2{n_k}} + y_k^{2{m_k}})} - 1$, ${z_k} = {x_k} + i{y_k}$, where ${n_k},{m_k} \in N$. In this paper we study the sharp Hàlder and ${L^p}$ estimates for the solutions of the tangential Cauchy-Riemann equations ${\overline \partial _b}$ on the boundary $\partial D$ of $D$ using the integral kernel method. In particular, we proved that if $\alpha \in L_{(0,1)}^\infty (\partial D)$ such that ${\overline \partial _b}\alpha = 0$ on $\partial D$ in the distribution sense, then there exists a $u \in {\Lambda _{1/2m}}(\partial D)$ satisfying ${\overline \partial _b}u = \alpha$ and ${\left \| u \right \|_{{\Lambda _{1/2m}}(\partial D)}} \leq c{\left \| \alpha \right \|_{{L^\infty }(\partial D)}}$ for some constant $c > 0$ independent of $\alpha$, where ${\Lambda _{1/2m}}(\partial D)$ is the Lipschitz space with exponent $\frac {1} {{2m}}$ and $2m = {\max _{1 \leq k \leq n}}\min (2{n_k},2{m_k})$ is the type of the domain $D$.References
- Harold P. Boas and Mei-Chi Shaw, Sobolev estimates for the Lewy operator on weakly pseudoconvex boundaries, Math. Ann. 274 (1986), no. 2, 221–231. MR 838466, DOI 10.1007/BF01457071
- A. Bonami and Ph. Charpentier, Solutions de l’équation $\overline {\partial }$ et zéros de la classe de Nevanlinna dans certains domaines faiblement pseudo-convexes, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 4, 53–89 (1983) (French, with English summary). MR 694128
- John P. D’Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615–637. MR 657241, DOI 10.2307/2007015
- Klas Diederich, John Erik Fornæss, and Jan Wiegerinck, Sharp Hölder estimates for $\overline \partial$ on ellipsoids, Manuscripta Math. 56 (1986), no. 4, 399–417. MR 860730, DOI 10.1007/BF01168502
- Charles L. Fefferman and Joseph J. Kohn, Hölder estimates on domains of complex dimension two and on three-dimensional CR manifolds, Adv. in Math. 69 (1988), no. 2, 223–303. MR 946264, DOI 10.1016/0001-8708(88)90002-3
- G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, No. 75, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0461588
- G. B. Folland and E. M. Stein, Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 367477, DOI 10.1002/cpa.3160270403
- Lawrence Gruman, The zeros of holomorphic functions in strictly pseudoconvex domains, Trans. Amer. Math. Soc. 207 (1975), 163–174. MR 382725, DOI 10.1090/S0002-9947-1975-0382725-X
- Reese Harvey and John Polking, Fundamental solutions in complex analysis. I. The Cauchy-Riemann operator, Duke Math. J. 46 (1979), no. 2, 253–300. MR 534054
- G. M. Henkin, H. Lewy’s equation and analysis on pseudoconvex manifolds, Uspehi Mat. Nauk 32 (1977), no. 3(195), 57–118, 247 (Russian). MR 0454067
- Norberto Kerzman, Hölder and $L^{p}$ estimates for solutions of $\bar \partial u=f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301–379. MR 281944, DOI 10.1002/cpa.3160240303
- J. J. Kohn, Boundaries of complex manifolds, Proc. Conf. Complex Analysis (Minneapolis, 1964) Springer, Berlin, 1965, pp. 81–94. MR 0175149
- J. J. Kohn, The range of the tangential Cauchy-Riemann operator, Duke Math. J. 53 (1986), no. 2, 525–545. MR 850548, DOI 10.1215/S0012-7094-86-05330-5
- J. J. Kohn and Hugo Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2) 81 (1965), 451–472. MR 177135, DOI 10.2307/1970624
- Steven G. Krantz, Optimal Lipschitz and $L^{p}$ regularity for the equation $\overline \partial u=f$ on stongly pseudo-convex domains, Math. Ann. 219 (1976), no. 3, 233–260. MR 397020, DOI 10.1007/BF01354286
- R. Michael Range, On Hölder estimates for $\bar \partial u=f$ on weakly pseudoconvex domains, Several complex variables (Cortona, 1976/1977) Scuola Norm. Sup. Pisa, Pisa, 1978, pp. 247–267. MR 681314
- A. V. Romanov, A formula and estimates for the solutions of the tangential Cauchy-Riemann equation, Mat. Sb. (N.S.) 99(141) (1976), no. 1, 58–83, 135 (Russian). MR 0409872
- Jean-Pierre Rosay, Équation de Lewy—résolubilité globale de l’équation $\partial _{b}u=f$ sur la frontière de domaines faiblement pseudo-convexes de $\textbf {C}^{2}$ (ou $\textbf {C}^{n})$, Duke Math. J. 49 (1982), no. 1, 121–128 (French). MR 650372
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Mei-Chi Shaw, A simplification of Rosay’s theorem on global solvability of tangential Cauchy-Riemann equations, Illinois J. Math. 30 (1986), no. 3, 465–467. MR 850343
- Mei-Chi Shaw, $L^2$-estimates and existence theorems for the tangential Cauchy-Riemann complex, Invent. Math. 82 (1985), no. 1, 133–150. MR 808113, DOI 10.1007/BF01394783
- Mei-Chi Shaw, Hölder and $L^p$ estimates for $\overline \partial _b$ on weakly pseudoconvex boundaries in $\textbf {C}^2$, Math. Ann. 279 (1988), no. 4, 635–652. MR 926425, DOI 10.1007/BF01458533
- Mei-Chi Shaw, Prescribing zeros of functions in the Nevanlinna class on weakly pseudo-convex domains in $\textbf {C}^2$, Trans. Amer. Math. Soc. 313 (1989), no. 1, 407–418. MR 961629, DOI 10.1090/S0002-9947-1989-0961629-5
- Henri Skoda, Valeurs au bord pour les solutions de l’opérateur $d''$, et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), no. 3, 225–299 (French). MR 450620
- E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973), 440–445. MR 315302, DOI 10.1090/S0002-9904-1973-13205-7 —, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1971.
- C. L. Fefferman, J. J. Kohn, and M. Machedon, Hölder estimates on CR manifolds with a diagonalizable Levi form, Adv. Math. 84 (1990), no. 1, 1–90. MR 1075233, DOI 10.1016/0001-8708(90)90036-M
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 324 (1991), 213-234
- MSC: Primary 32F20; Secondary 32A25, 32F15, 35N15
- DOI: https://doi.org/10.1090/S0002-9947-1991-1005084-7
- MathSciNet review: 1005084