Similarity orbits and the range of the generalized derivation $X\to MX-XN$
HTML articles powered by AMS MathViewer
- by Allen Schweinsberg
- Trans. Amer. Math. Soc. 324 (1991), 201-211
- DOI: https://doi.org/10.1090/S0002-9947-1991-1005938-1
- PDF | Request permission
Abstract:
If $M$ and $N$ are bounded operators on infinite dimensional complex Hilbert spaces $\mathcal {H}$ and $\mathcal {K}$, let $\tau (X) = MX - XN$ for $X$ in $\mathcal {L}(\mathcal {K},\mathcal {H})$. The closure of the range of $\tau$ is characterized when $M$ and $N$ are normal. There is a close connection between the range of $\tau$ and operators $C$ for which $[\begin {array}{*{20}{c}} M \& C \\ 0 \& N \\ \end {array} ]$ is in the closure of the similarity orbit of $[\begin {array}{*{20}{c}} M \& 0 \\ 0 ^ N \\ \end {array} ]$. This latter set is characterized and compared with the closure of the range of $\tau$.References
- C. Apostol, L. A. Fialkow, D. A. Herrero, and D. Voiculescu, Approximation of Hilbert space operators, Vol. 2, Pitman, London, 1984.
- Lawrence A. Fialkow, A note on the range of the operator $X\rightarrow AX-XB$, Illinois J. Math. 25 (1981), no.Β 1, 112β124. MR 602902 D. A. Herrero, Approximation of Hilbert space operators, Vol. 1, Pitman, London, 1982.
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682
- Frigyes Riesz and BΓ©la Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- Marvin Rosenblum, On the operator equation $BX-XA=Q$, Duke Math. J. 23 (1956), 263β269. MR 79235
- Marvin Rosenblum, The operator equation $BX-XA=Q$ with self-adjoint $A$ and $B$, Proc. Amer. Math. Soc. 20 (1969), 115β120. MR 233214, DOI 10.1090/S0002-9939-1969-0233214-7
- William E. Roth, The equations $AX-YB=C$ and $AX-XB=C$ in matrices, Proc. Amer. Math. Soc. 3 (1952), 392β396. MR 47598, DOI 10.1090/S0002-9939-1952-0047598-3
- Allen Schweinsberg, The operator equation $AX-XB=C$ with normal $A$ and $B$, Pacific J. Math. 102 (1982), no.Β 2, 447β453. MR 686563
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 324 (1991), 201-211
- MSC: Primary 47A65; Secondary 47B15, 47B47
- DOI: https://doi.org/10.1090/S0002-9947-1991-1005938-1
- MathSciNet review: 1005938