Stable patterns in a viscous diffusion equation
HTML articles powered by AMS MathViewer
- by A. Novick-Cohen and R. L. Pego
- Trans. Amer. Math. Soc. 324 (1991), 331-351
- DOI: https://doi.org/10.1090/S0002-9947-1991-1015926-7
- PDF | Request permission
Abstract:
We consider a pseudoparabolic regularization of a forward-backward nonlinear diffusion equation ${u_t} = \Delta (f(u) + \nu {u_t})$, motivated by the problem of phase separation in a viscous binary mixture. The function $f$ is non-monotone, so there are discontinuous steady state solutions corresponding to arbitrary arrangements of phases. We find that any bounded measurable steady state solution $u(x)$ satisfying $f(u) = {\text {constant}}$, $f’(u(x)) > 0$ a.e. is dynamically stable to perturbations in the sense of convergence in measure. In particular, smooth solutions may achieve discontinuous asymptotic states. Furthermore, stable states need not correspond to absolute minimizers of free energy, thus violating Gibbs’ principle of stability for phase mixtures.References
- E. C. Aifantis, On the problem of diffusion in solids, Acta Mech. 37 (1980), no. 3-4, 265–296 (English, with German summary). MR 586062, DOI 10.1007/BF01202949
- G. Andrews and J. M. Ball, Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity, J. Differential Equations 44 (1982), no. 2, 306–341. Special issue dedicated to J. P. LaSalle. MR 657784, DOI 10.1016/0022-0396(82)90019-5 K. Binder, H. L. Frisch, and J. Jäckle, Kinetics of phase separation in the presence of slowly relaxing structural variables, J. Chem. Phys. 85 (1986), 1505-1512. J. W. Cahn, On spinodal decomposition, Acta Metall. 9 (1961), 795. P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys. 19 (1968), 614-627.
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. 10-I, Academic Press, New York-London, 1969. Enlarged and corrected printing. MR 0349288 C. J. Dürning, Differential sorption in viscoelastic fluids, J. Polym. Sci. Polym. Phys. Ed. 23 (1985), 1831.
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244 J. Jäckle and H. L. Frisch, Relaxation of chemical potential and a generalized diffusion equation, J. Polym. Sci. Polym. Phys. Ed. 23 (1985), 675-682. —, Properties of a generalized diffusion equation with a memory, J. Chem. Phys. 85 (1986), 1621-27.
- K. Kuttler and Elias C. Aifantis, Existence and uniqueness in nonclassical diffusion, Quart. Appl. Math. 45 (1987), no. 3, 549–560. MR 910461, DOI 10.1090/S0033-569X-1987-0910461-3
- Robert L. Pego, Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability, Arch. Rational Mech. Anal. 97 (1987), no. 4, 353–394. MR 865845, DOI 10.1007/BF00280411
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825, DOI 10.1007/978-1-4612-5282-5 G. B. Stephenson, Spinodal decomposition in amorphous systems, J. Non-Cryst. Sol. 66 (1984), 393-427.
- Tsuan Wu Ting, Parabolic and pseudo-parabolic partial differential equations, J. Math. Soc. Japan 21 (1969), 440–453. MR 264231, DOI 10.2969/jmsj/02130440
- Tsuan Wu Ting, A cooling process according to two-temperature theory of heat conduction, J. Math. Anal. Appl. 45 (1974), 23–31. MR 330771, DOI 10.1016/0022-247X(74)90116-4
- Tsuan Wu Ting, Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal. 14 (1963), 1–26. MR 153255, DOI 10.1007/BF00250690
- H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 324 (1991), 331-351
- MSC: Primary 35K70; Secondary 35K55, 80A15
- DOI: https://doi.org/10.1090/S0002-9947-1991-1015926-7
- MathSciNet review: 1015926