Lines on the Fermat quintic threefold and the infinitesimal generalized Hodge conjecture
HTML articles powered by AMS MathViewer
- by Alberto Albano and Sheldon Katz
- Trans. Amer. Math. Soc. 324 (1991), 353-368
- DOI: https://doi.org/10.1090/S0002-9947-1991-1024767-6
- PDF | Request permission
Abstract:
We study the deformation theory of lines on the Fermat quintic threefold. We formulate an infinitesimal version of the generalized Hodge conjecture, and use our analysis of lines to prove it in a special case.References
- A. Albano, Infinite generation of the Griffiths group: a local proof, Thesis, University of Utah, 1986.
- M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277–291. MR 232018, DOI 10.1007/BF01389777 C. H. Clemens, Homological modulo algebraic equivalence is not finitely generated, Publ. Math. I.H.E.S. 58 (1983), 231-250. —, $\mathcal {D}$-modules and subcanonical deformations, Preprint, University of Utah, 1988.
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460–495; 90 (1969), 496–541. MR 0260733, DOI 10.2307/1970746 —, Periods of integrals on algebraic manifolds. I, II, Amer. J. Math. 90 (1968), 568-626, 805-865.
- Joe Harris, Galois groups of enumerative problems, Duke Math. J. 46 (1979), no. 4, 685–724. MR 552521
- Sheldon Katz, On the finiteness of rational curves on quintic threefolds, Compositio Math. 60 (1986), no. 2, 151–162. MR 868135
- Sheldon Katz, Degenerations of quintic threefolds and their lines, Duke Math. J. 50 (1983), no. 4, 1127–1135. MR 726321, DOI 10.1215/S0012-7094-83-05048-2
- Sheldon Katz, Tangents to a multiple plane curve, Pacific J. Math. 124 (1986), no. 2, 321–331. MR 856166
- K. Kodaira, L. Nirenberg, and D. C. Spencer, On the existence of deformations of complex analytic structures, Ann. of Math. (2) 68 (1958), 450–459. MR 112157, DOI 10.2307/1970256
- K. Kodaira, On stability of compact submanifolds of complex manifolds, Amer. J. Math. 85 (1963), 79–94. MR 153033, DOI 10.2307/2373187
- A. Ogus, Griffiths transversality in crystalline cohomology, Ann. of Math. (2) 108 (1978), no. 2, 395–419. MR 506993, DOI 10.2307/1971182
- Ziv Ran, Cycles on Fermat hypersurfaces, Compositio Math. 42 (1980/81), no. 1, 121–142. MR 594486
- Miles Reid, The moduli space of $3$-folds with $K=0$ may nevertheless be irreducible, Math. Ann. 278 (1987), no. 1-4, 329–334. MR 909231, DOI 10.1007/BF01458074
- Tetsuji Shioda, The Hodge conjecture for Fermat varieties, Math. Ann. 245 (1979), no. 2, 175–184. MR 552586, DOI 10.1007/BF01428804
- Tetsuji Shioda, Algebraic cycles on hypersurfaces in $\textbf {P}^N$, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 717–732. MR 946254, DOI 10.2969/aspm/01010717
- Gang Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical aspects of string theory (San Diego, Calif., 1986) Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, Singapore, 1987, pp. 629–646. MR 915841
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 324 (1991), 353-368
- MSC: Primary 14J30; Secondary 14C30, 14K30
- DOI: https://doi.org/10.1090/S0002-9947-1991-1024767-6
- MathSciNet review: 1024767