Symplectic double groupoids over Poisson $(ax+b)$-groups
HTML articles powered by AMS MathViewer
- by Kentaro Mikami
- Trans. Amer. Math. Soc. 324 (1991), 447-463
- DOI: https://doi.org/10.1090/S0002-9947-1991-1025757-X
- PDF | Request permission
Abstract:
First, we classify all the multiplicative Poisson structures on the $(ax + b)$-group and determine their dual Poisson Lie groups. Next, we show the existence of symplectic groupoid over the Poisson $(ax + b)$-group. Finally, by the Hamilton-Jacobi method we construct nontrivial symplectic double groupoids and conclude that for each pair of nondegenerate multiplicative Poisson structures of the $(ax + b)$-group there exists a symplectic double groupoid.References
- A. Coste, P. Dazord, and A. Weinstein, Groupoïdes symplectiques, Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, Publ. Dép. Math. Nouvelle Sér. A, vol. 87, Univ. Claude-Bernard, Lyon, 1987, pp. i–ii, 1–62 (French). MR 996653
- V. G. Drinfel′d, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations, Dokl. Akad. Nauk SSSR 268 (1983), no. 2, 285–287 (Russian). MR 688240 —, Quantum groups, Proc. ICM’86, vol. 1, Internat. Congr. Math., 1986, pp. 798-820.
- M. V. Karasëv, Analogues of objects of the theory of Lie groups for nonlinear Poisson brackets, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 3, 508–538, 638 (Russian). MR 854594
- Jiang-Hua Lu and Alan Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom. 31 (1990), no. 2, 501–526. MR 1037412
- Kentaro Mikami and Alan Weinstein, Moments and reduction for symplectic groupoids, Publ. Res. Inst. Math. Sci. 24 (1988), no. 1, 121–140. MR 944869, DOI 10.2977/prims/1195175328
- Michael A. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions, Publ. Res. Inst. Math. Sci. 21 (1985), no. 6, 1237–1260. MR 842417, DOI 10.2977/prims/1195178514
- Alan Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), no. 3, 523–557. MR 723816
- Alan Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 1, 101–104. MR 866024, DOI 10.1090/S0273-0979-1987-15473-5 —, The geometry of Poisson brackets, Surveys in Geometry, Department of Mathematics, University of Tokyo, 1987.
- Alan Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988), no. 4, 705–727. MR 959095, DOI 10.2969/jmsj/04040705
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 324 (1991), 447-463
- MSC: Primary 17B65; Secondary 22E65, 58F05
- DOI: https://doi.org/10.1090/S0002-9947-1991-1025757-X
- MathSciNet review: 1025757