NOETHER-LEFSCHETZ LOCUS FOR SURFACES

SUNG-OCK KIM

ABSTRACT. We generalize M. Green's Explicit Noether-Lefschetz Theorem to the family of smooth complete intersection surfaces in the higher dimensional projective spaces. Moreover, we give a new proof of the Density Theorem due to C. Ciliberto, J. Harris, and R. Miranda [5].

1. INTRODUCTION

Let \mathbb{P}^n be the complex projective space of dimension n. The Noether-Lefschetz Theorem says that a general surface S of degree d in \mathbb{P}^3 contains only curves which are complete intersections of S with another hypersurface in \mathbb{P}^3 for $d \geq 4$. The word "general" is used in the following sense: A property is said to hold at a general point of a projective variety V, if there exists a countable union Σ of proper subvarieties of V such that the property holds at all points of $V - \Sigma$. In [21], Lefschetz proved an even more general version: A general complete intersection surface S of $n - 2$ hypersurfaces in \mathbb{P}^n, $n \geq 3$, contains only curves that are themselves complete intersections unless S is an intersection of two quadric 3-folds in \mathbb{P}^4 or degree $S \leq 3$ in \mathbb{P}^3. We denote by Y_n the space of smooth complete intersection surfaces of type (d_1, \ldots, d_{n-2}) in \mathbb{P}^n, where $2 \leq d_1 \leq d_2 \leq \cdots \leq d_{n-2}$. Let $E = \bigoplus_{i=1}^{n-2} \mathcal{O}_{\mathbb{P}^n}(d_i)$. Y_n is parametrized by an open subset, which is also denoted by Y_n, by abuse of notation, of the Grassmannian of 1-dimensional subspaces of $H^0(\mathbb{P}^n, E)$. The Noether-Lefschetz locus Σ_n in Y_n is the set of smooth surfaces in Y_n containing curves which are not complete intersections, i.e.,

$$\Sigma_n = \{ S \in Y_n \mid \text{Pic}(S) \text{ is not generated by the hyperplane class} \}.$$

Since the fundamental work of Noether and Lefschetz, their results have been improved in a number of interesting directions (see, e.g., [3, 7, 11, 12, 23, 26, 27]). For $n = 3$, by a mixture of Hodge-theoretic and algebraic techniques, Green [8, 10] showed that every irreducible component of Σ_3 has codimension at least $d_1 - 3$ in the family of smooth surfaces of degree d_1 in \mathbb{P}^3 for $d_1 \geq 3$,
which is called the explicit Noether-Lefschetz Theorem. A generalization of this theorem to the case \(n \geq 4 \) is given in §2 (cf. Theorem 1). There is one new phenomenon in this case which is not present in the case of surfaces in \(\mathbb{P}^3 \). For example, the analog of Green's result in \(\mathbb{P}^4 \) holds only when a general element of a component is the intersection of two smooth 3-folds.

On the other hand, an upper bound for the codimension of the irreducible components in the case \(n = 3 \) is \(p_g = (d_i - 1) \). Ciliberto, Harris and Miranda [5] proved that over an algebraically closed field of any characteristic, for \(d_i \geq 4 \), the Noether-Lefschetz locus in the family \(Y_3 \) of smooth surfaces of degree \(d_1 \) in \(\mathbb{P}^3 \) contains infinitely many components having maximal codimension \(p_g \) and the union of these components is Zariski dense in \(Y_3 \). Following M. Green's idea, they showed that over the complex numbers, the existence of one such component implies that the union of the components having maximal codimension \(p_g \) is dense in \(Y_3 \) in the classical topology. We will give a rather simple infinitesimal proof of this without constructing such components directly in §3.

2. A GENERALIZATION OF THE EXPLICIT NOETHER-LEFSCHETZ THEOREM

Let \(\Sigma_L \subset \Sigma_n \) denote the subvariety of surfaces containing lines, i.e., curves of degree 1 in \(\mathbb{P}^n \). Let \(G = \text{Grassmannian of lines in } \mathbb{P}^n \). Then \(\Sigma_L \) is the image under projection on the second factor of the incidence correspondence

\[
\tilde{\Sigma}_L = \{(C, S) \mid C \subset S \} \subset G \times Y_n.
\]

For a line \(l \subset \mathbb{P}^n \), we have an exact sequence

\[
0 \rightarrow \mathcal{I}_l|\mathbb{P}^n
\rightarrow \mathcal{O}_{\mathbb{P}^n}
\rightarrow \mathcal{O}_l
\rightarrow 0
\]

where \(r \) is the restriction map. Tensoring with \(E \) and taking the long exact sequence of cohomology, we have

\[
0 \rightarrow H^0(\mathbb{P}^n, \mathcal{I}_l|\mathbb{P}^n \otimes E) \rightarrow H^0(\mathbb{P}^n, E) \rightarrow H^0(\mathbb{P}^n, E \otimes \mathcal{O}_l) \rightarrow \cdots.
\]

From this sequence, we can see that the fiber of the projection map \(\pi_1: \tilde{\Sigma}_L \rightarrow G \) over \(l \) is contained in \(H^0(\mathbb{P}^n, \mathcal{I}_l|\mathbb{P}^n \otimes E) \). Since \(H^0(\mathbb{P}^n, E) \rightarrow H^0(\mathbb{P}^n, E \otimes \mathcal{O}_l) \) is surjective,

\[
\dim \text{fiber of } \pi_1 = \dim H^0(\mathbb{P}^n, E) - \sum_{i=1}^{n-2} (d_i + 1) - 1.
\]

So

\[
\text{codim}_{Y_n} \Sigma_L = \sum_{i=1}^{n-2} d_i - n.
\]

We have the following explicit Noether-Lefschetz Theorem for \(n \geq 4 \), which generalizes the theorem of Green [10] for \(n = 3 \).
Theorem 1. Let \(n \geq 4 \). An irreducible component \(\Sigma' \) of \(\Sigma_n \) has codimension at least \(\sum_{i=1}^{n-2} d_i - n \) in \(Y_n \) if for a general point of \(\Sigma' \), the corresponding surface \(S = \bigcap_{i=1}^{k} H_i \) has the property that \(\bigcap_{i=1}^{k} H_i \) has no singularity for any \(k \) with \(d_k < d_{k+1} \).

Example. The hypothesis in Theorem 1 is necessary. For example, let \(n = 4 \) and \(F_1 = z_0^d_1 + z_0 z_2^{d_2-1} + z_1^{d_1} + z_2 z_3^{d_3-1} \). Then \(H_1 = \{ F_1 = 0 \} \) has an isolated singularity at \((0, 0, 0, 0, 1)\) and has no other singularities. It is a cone over a smooth surface in \(\mathbb{P}^3 \) containing a line. \(H_1 \) contains the plane \(z_0 = z_1 = 0 \). The intersection of \(H_1 \) with any 3-fold \(H_2 \) of degree \(d_2 \) contains a plane curve of degree \(d_2 \) and therefore is in the Noether-Lefschetz locus. The component \(\Sigma' \) containing these complete intersection surfaces has codimension depending only on \(d_1 \), i.e., codimension of \(\Sigma' \) is at most \((\frac{d_1+4}{4}) \). If \(d_2 > (\frac{d_1+4}{4}) + 4 - d_1 \), then \(\text{codim}_{\mathbb{P}_4} \Sigma' < d_1 + d_2 - 4 \).

We will give a proof of Theorem 1 using similar techniques to Green’s [10]. First, we will show the following simple algebraic fact and then reduce our theorem to this.

Proposition 1. Let \(W \subseteq H^0(\mathbb{P}^n, E) \) be a subspace such that the evaluation map

\[
W \otimes \mathcal{O}_{\mathbb{P}^n,x} \rightarrow E_x
\]

is surjective for all \(x \in \mathbb{P}^n \). Then the map

\[
W \otimes H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(k)) \rightarrow H^0(\mathbb{P}^n, E(k))
\]

is surjective if \(k \geq \text{codim} \ W \).

Proof. Let \(c = \text{codim} \ W \). We can choose an increasing sequence of linear subspaces

\[
W_c = W \subset W_{c-1} \subset \ldots \subset W_1 \subset W_0 = H^0(\mathbb{P}^n, E)
\]

so that \(\text{dim} \ W_{i-1}/W_i = 1 \) for \(i = 1, 2, \ldots, c \). Since the evaluation map \(W \otimes \mathcal{O}_{\mathbb{P}^n,x} \rightarrow E_x \) is surjective at all \(x \in \mathbb{P}^n \), the kernel \(M_i \) of the map \(W_i \otimes \mathcal{O}_{\mathbb{P}^n} \rightarrow E \) is a vector bundle on \(\mathbb{P}^n \) sitting in the exact sequence

\[
0 \rightarrow M_i \rightarrow W_i \otimes \mathcal{O}_{\mathbb{P}^n} \rightarrow E \rightarrow 0
\]

for \(i = 1, 2, \ldots, c \), and it is enough to show that

\[
H^1(M_c \otimes \mathcal{O}_{\mathbb{P}^n}(k)) = 0 \quad \text{if} \quad k \geq c = \text{codim} \ W,
\]

which follows from the following lemma.

Lemma. For all \(i = 0, 1, \ldots, c \), \(H^q(\mathbb{P}^n, \bigwedge^p M_i(k)) = 0 \) if \(q \geq 1 \) and \(k + q \geq p + i \).

Proof. We note that the \(M_i \)'s sit in the exact sequence

\[
0 \rightarrow M_i \rightarrow M_{i-1} \rightarrow \mathcal{O}_{\mathbb{P}^n} \rightarrow 0
\]
and thus we have an exact sequence

$$0 \to \bigwedge^{p+1} M_i \to \bigwedge^{p+1} M_{i-1} \to \bigwedge^p M_i \to 0$$

for each i. Tensoring by $\mathcal{O}_{\mathbb{P}^n}(k)$ and taking the long exact sequence on cohomology, we have

$$\cdots \to H^q\left(\mathbb{P}^n, \bigwedge^{p+1} M_{i-1}(k)\right) \to H^q\left(\mathbb{P}^n, \bigwedge^p M_i(k)\right) \to H^{q+1}\left(\mathbb{P}^n, \bigwedge^{p+1} M_i(k)\right) \to \cdots.$$

Let $q \geq 1$ and $k + q \geq p + i$, $i = 0, 1, \ldots, c$. We will use induction on i and p to prove the lemma. First, notice that if $p \geq \text{rank } M_i$, then $H^q(\mathbb{P}^n, \bigwedge^{p+1} M_i(k)) = 0$ for all $q \geq 0$ and for any $k \geq 0$.

Sublemma. For $i = 0$, $H^q(\mathbb{P}^n, \bigwedge^p M_0(k)) = 0$ if $q \geq 1$ and $k + q \geq p$.

To see this, we first recall (cf. [24, Lecture 14]) that a coherent sheaf F on \mathbb{P}^n is said to be m-regular, if $H^q(\mathbb{P}^n, F(m-q)) = 0$ for $q > 0$.

From the exact sequence

$$0 \to M_0 \to H^0(\mathbb{P}^n, E) \otimes \mathcal{O}_{\mathbb{P}^n} \to E \to 0$$

tensored with $\mathcal{O}_{\mathbb{P}^n}(1-q)$, we have the long exact sequence on the cohomology

$$\cdots \to H^{q-1}(\mathbb{P}^n, E(1-q)) \to H^0(\mathbb{P}^n, M_0(1-q)) \to H^q(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1-q)) \to \cdots.$$

If $q = 1$, then $H^0(\mathbb{P}^n, E) \otimes H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}) \to H^0(\mathbb{P}^n, E)$ is an isomorphism and $H^1(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}) = 0$, hence $H^1(\mathbb{P}^n, M_0) = 0$.

For $q > 1$, $H^{q-1}(\mathbb{P}^n, E(1-q)) = 0$ and $H^q(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1-q)) = 0$, and hence

$$H^q(\mathbb{P}^n, M_0(1-q)) = 0.$$

Thus M_0 is 1-regular. Then $\bigwedge^p M_0$ is p-regular (see, e.g., [20, Lemma 2.7]). Since p-regularity implies $(p+1)$-regularity [24, loc.cit], the sublemma follows.

By ascending induction on i, we may assume

$$H^q\left(\mathbb{P}^n, \bigwedge^{p+1} M_{i-1}(k)\right) = 0$$

since $k + q \geq (p + 1) + (i - 1) = p + i$. By descending induction on p, we may assume

$$H^{q+1}\left(\mathbb{P}^n, \bigwedge^{p+1} M_i(k)\right) = 0$$

since $k + q \geq p + i$ which is equivalent to $k + (q + 1) \geq (p + 1) + i$. Hence

$$H^q\left(\mathbb{P}^n, \bigwedge^p M_i(k)\right) = 0,$$

and the lemma follows.
For a compact complex manifold M of dimension n with the associated $(1,1)$-form ω, we recall that the primitive cohomology is

$$H^{n-k}_{pr}(M) = \ker(\omega^{k+1} : H^{n-k}(M) \to H^{n+k+2}(M)).$$

We denote $H^{p,q}_{pr}(M) = H^{p,q}(M) \cap H^{p+q}_{pr}(M)$. For a smooth hypersurface X of degree d in \mathbb{P}^n with defining equation $F(z_0, \ldots, z_n) = 0$, it is known (cf. [4, 15]) that there are natural Poincaré residue isomorphisms

$$(2.1) \quad H^{n-k-1}_{pr,k}(X) \simeq S^{d(k+1)-n-1}/J_{F,d(k+1)-n-1}$$

where $S = \bigoplus_{k \geq 0} S^k$ is the graded ring $\mathbb{C}[z_0, \ldots, z_n]$ and $J_F = \bigoplus_{k \geq d-1} J_{F,k}$ denotes the Jacobian ideal of F generated by the first partial derivatives of F.

In the proof of Theorem 1, we will use this kind of algebraic representations of $H^{2,0}(S)$ and $H^{1,1}_{pr}(S)$ for $S \in Y_n$.

We need the following special cases of the Bott Vanishing Theorem (cf. [2]):

Bott Vanishing Theorem. $H^p(\mathbb{P}^n, \Omega^q_{\mathbb{P}^n}(k)) = 0$ unless

(i) $p = q$ and $k = 0$,
(ii) $p = 0$ and $k > q$, or
(iii) $p = n$ and $k < q - n$.

We will also use the following well-known fact (see, e.g., [18, pp. 445–446]):

$$(2.2) \text{Let}$$

$$0 \to \mathcal{E}^0 \to \cdots \to \mathcal{E}^m \to 0$$

be an exact sequence of sheaves on a topological space X. Then there is a spectral sequence abutting to zero with $E_{i}^{p,q} = H^q(X, \mathcal{E}^p)$.

Let $B = \bigoplus_{i=1}^{n-2} \mathcal{O}_{\mathbb{P}^n}(-d_i)$. Then for $S \in Y_n$, there is a Koszul complex

$$(2.3) \quad 0 \to \bigwedge_{i=1}^{n-2} B \to \bigwedge_{i=1}^{n-3} B \to \cdots \to \bigwedge_{i=1}^{2} B \to B \to \mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_S \to 0,$$

which is exact since S is a complete intersection (see, e.g., [18, p. 688]). We denote $\mu = \sum_{i=1}^{n-2} d_i - n - 1$. For an algebraic representation of $H^{2,0}(S)$, tensoring (2.3) with $\mathcal{O}_{\mathbb{P}^n}(\mu)$ and applying (2.2), we obtain a spectral sequence abutting to zero with $E_{1}^{p,q} = 0$ unless $q = 0$, $q = n$, or $p = n - 1$. There is no nonzero differential other than the differentials in E_1 coming into the position $(p, 0)$ for $p = 0, 1, \ldots, n - 1$. So we obtain an exact sequence

$$\cdots \to H^0\left(\mathbb{P}^n, \bigoplus_{i=1}^{n-2} \mathcal{O}_{\mathbb{P}^n}(\mu - d_i)\right) \to H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(\mu)) \to H^0(\mathbb{P}^n, \mathcal{O}_S(\mu)) \to 0,$$

and hence

$$H^{2,0}(S) \simeq H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(\mu))/\text{im} \ H^0\left(\mathbb{P}^n, \bigoplus_{i=1}^{n-2} \mathcal{O}_{\mathbb{P}^n}(\mu - d_i)\right).$$
For an algebraic representation of $H_{pr}^{1,1}(S)$ for $S \in Y_n$, we take the long exact sequence on the cohomology of the short exact sequence

$$0 \to \Theta_S \otimes K_S \to \Theta_{p^n|S} \otimes K_S \to N_{S|p^n} \otimes K_S \to 0,$$

where Θ_S and $N_{S|p^n}$ denote the holomorphic tangent bundle of S and the normal bundle of S in \mathbb{P}^n, respectively. Then we get

$$\to H^0(S, \Theta_{p^n|S} \otimes K_S) \to H^0(S, N_{S|p^n} \otimes K_S) \to H^1(S, \Theta_S \otimes K_S)$$

$$\to H^1(S, \Theta_{p^n|S} \otimes K_S) \to \cdots.$$

So

$$\frac{H^0(S, N_{S|p^n} \otimes K_S)}{\text{im} H^0(S, \Theta_{p^n|S} \otimes K_S)} \simeq \left(\frac{H^1(S, \Omega^1_S)}{\text{im} H^1(S, \Omega_{p^n|S})} \right)^*$$

by Serre duality. We will show that

$$(2.4) \quad H_{pr}^{1,1}(S) \simeq \frac{H^1(S, \Omega^1_S)}{\text{im} H^1(S, \Omega_{p^n|S})}.$$}

Applying (2.2) to the exact sequence (2.3) tensored with $\Omega^1_{p^n}$, we get a spectral sequence abutting to zero. By the Bott Vanishing Theorem, $E^p,q = 0$ unless $q = 0, n$, or $p = n - 1$, or $(p, q) = (n - 2, 1)$. Moreover, no nonzero differential except the differential in E_1 comes into or goes out of the position $(n - 2, 1)$ or $(n - 1, 1)$. So $H^1(\mathbb{P}^n, \Omega^1_{p^n}) = H^1(S, \Omega^1_{p^n|S})$. From the exact sequence (2.3) tensored with the dual E^* of E, we get a spectral sequence abutting to zero with $E^p,q = 0$ unless $q = 0$, or $q = n$, or $p = n - 1$. No nonzero differential comes into the position $(n - 1, 1)$. So $H^1(S, \mathcal{O}_S \otimes E^*) = 0$. We note that $N_{S|p^n} = \mathcal{O}_S$. Thus

$$\text{im} H^1(S, \Omega^1_{p^n|S}) \simeq H^1(S, \Omega^1_{p^n|S}) \simeq H^1(\mathbb{P}^n, \Omega^1_{p^n}) \simeq (\omega),$$

where ω is the associated (1,1) form of \mathbb{P}^n (i.e., ω is the first Chern class $c_1(\mathcal{O}_{\mathbb{P}^n}(1))$ of $\mathcal{O}_{\mathbb{P}^n}(1)$). By Lefschetz decomposition, $H^1(\Omega^1_S) \simeq H_{pr}^{1,1}(S) \otimes \omega|_S \cdot H^0,0(S)$. Hence we get (2.4). From the spectral sequence attached to the exact sequence (2.3) tensored with $E(\mu)$, we can see that

$$0 \to H^0(\mathbb{P}^n, E(-n - 1)) \to \cdots \to H^0(\mathbb{P}^n, E(\mu)) \to H^0(S, N_{S|p^n} \otimes K_S) \to 0$$

is exact. Hence

$$\frac{H^0(S, N_{S|p^n} \otimes K_S)}{\text{im} H^0(S, \Theta_{p^n|S} \otimes K_S)} \simeq \frac{H^0(\mathbb{P}^n, E(\mu))}{r^{-1}(\text{im} H^0(\Theta_{p^n|S} \otimes K_S))}.$$

Summarizing the above computations, we obtain the following identifications:
Proposition 2.

(i) $H^{2,0}(S) \simeq \frac{H^0(P^n, \mathcal{O}_{P^n}(\mu))}{\text{im } H^0(P^n, \bigoplus_{i=1}^{n-2} \mathcal{O}_{P^n}(\mu - d_i))}$

(ii) $H^{1,1}_{pr}(S) \simeq \frac{H^0(S, N_{S|P^n} \otimes K_S)}{\text{im } H^0(S, \Theta_{P^n}|_S \otimes K_S)} \simeq \frac{H^0(P^n, E \otimes \mathcal{O}_{P^n}(\mu))}{r^{-1}(\text{im } H^0(S, \Theta_{P^n}|_S \otimes K_S))}$.

We also need an algebraic representation of the subspace of $H^1(S, \Theta_S)$ parametrizing the deformations of S in P^n, that is, the image of the Zariski tangent space $T_S(Y_n)$ of Y_n at S under the Kodaira-Spencer map $\rho: T_S(Y_n) \to H^1(S, \Theta_S)$. Let $S = \bigcap_{i=1}^{n-2}\{F_i = 0\}$. $T_S(Y_n)$ is naturally isomorphic to

$\text{Hom}((S), H^0(P^n, E)/(S)) \simeq H^0(P^n, E)/(S)$,

where (S) denotes the 1-dimensional subspace of $H^0(P^n, E)$ generated by (F_1, \ldots, F_{n-2}). So the map $T_S(Y) \to H^0(S, N_{S|P^n})$ is surjective and

$\rho(T_S(Y_n)) = \text{im}\{H^0(S, N_{S|P^n}) \to H^1(S, \Theta_S)\}$.

Tensoring the exact sequence (2.3) with Θ_{P^n} and applying (2.2), we have a spectral sequence abutting to zero. By Serre duality and the Bott Vanishing Theorem, $H^0(P^n, \Theta_{P^n}(\kappa))$ vanishes unless $-k - n - 1 < 1 - n$. Hence $E_1^{p, q} = 0$ unless $(p, q) = (n - 2, 0), (n - 1, 0), (n - 2, 1), (n - 1, 1)$, or $q = n$. No nonzero differential except the differentials in E_1 comes into the position $(n - 2, 0)$ or $(n - 1, 0)$. Hence the map $\gamma_1: H^0(P^n, \Theta_{P^n}) \to H^0(S, \Theta_{P^n}|_S)$ is an isomorphism. From the spectral sequence attached to the exact sequence (2.3) tensored with E, we can see that the map $\gamma_2: H^0(P^n, E) \to H^0(S, E \otimes \Theta_S)$ is surjective. From the short exact sequence

$0 \to \Theta_S \to \Theta_{P^n}|_S \to N_{S|P^n} \to 0$,

we get the following long exact sequence which fits into a diagram:

$\begin{array}{ccccccc}
0 & \to & \Theta_S & \to & \Theta_{P^n}|_S & \to & N_{S|P^n} \to 0 \\
\downarrow & & & & & & \\
\longrightarrow & H^0(P^n, \Theta_{P^n}) & \longrightarrow & H^0(S, \Theta_{P^n}|_S) & \alpha \\
\downarrow & & & & & \\
\longrightarrow & H^0(P^n, E) & \longrightarrow & H^0(S, N_{S|P^n}) & \longrightarrow & 0 & \beta \\
\downarrow & & & & & & \\
& H^1(S, \Theta_S) & & & & & \\
\end{array}$
Hence

\[\rho(T_S(Y_n)) \simeq \frac{H^0(S, N_{S|P^n})}{\alpha \circ \gamma_1(H^0(P^n, \Theta_{P^n}))} \simeq \frac{H^0(P^n, E)}{\gamma^*_1(\alpha(H^0(S, \Theta_{P^n}|S)))}. \]

Another preliminary fact we will use is the description of the Zariski tangent space to

\[\tilde{Y}_n = \{(S, L) \mid S \in Y_n, \ L \in \text{Pic}(S)\}. \]

The first prolongation bundle \(P_1(L) \) of \(L \) is defined by an exact sequence

\[0 \to \Omega^1_S \otimes L \to P_1(L) \to L \to 0 \]

with the extension class \(c_1(L) \in \text{Ext}^1(L, \Omega^1_S \otimes L) = H^1(S, \Omega^1_S) \). The computation of Zariski tangent space to the set of pairs of curves with line bundles is given in [1]. An analogous argument gives the description for the surface case: For a fixed \((S, L) \), the Zariski tangent space \(T_{(S, L)}(\tilde{Y}_n) \) of \(Y_n \) at \((S, L) \) maps into \(H^1(S, P_1(L)^* \otimes L) \) as follows. As a complex manifold, the line bundle \(L \to S \) is given by the data

\[\{U_\alpha, z_\alpha, f_\alpha, g_\alpha\}, \]

where \(\{U_\alpha\} \) is a finite open covering of \(S \), \(z_\alpha = (z_{\alpha_1}, z_{\alpha_2}) \) are local coordinates in \(U_\alpha \), \(f_\alpha \) is the coordinate transformation on \(U_\alpha \cap U_\beta \), and \(g_\alpha \) is the transition function for \(L \). Thus two cocycle rules \(f_{\alpha\gamma} = f_\alpha \circ f_\gamma \) and \(g_{\alpha\gamma} = g_\alpha g_\gamma \) hold in \(U_\alpha \cap U_\beta \cap U_\gamma \). The first order deformation of \(L \to S \) is given by

\[\{U_\alpha, z_\alpha, f_\alpha, g_\alpha\}, \]

satisfying

\[f_{\alpha\gamma}(z_\gamma, t) \equiv f_\alpha(f_\gamma(z_\gamma, t), t) \mod t^2, \]

\[g_{\alpha\gamma}(z_\gamma, t) \equiv g_\alpha(g_\gamma(z_\gamma, t), t) \cdot g_\gamma(z_\gamma, t) \mod t^2 \]

on \(U_\alpha \cap U_\beta \cap U_\gamma \). Taking derivatives at \(t = 0 \), we can see that \(\tilde{f}_\alpha = \{\frac{\partial f_\gamma}{\partial z_\gamma}\} \) is a cocycle defining a class \(\tilde{f} \in H^1(S, \Theta_S) \) and that \(\tilde{g}_\alpha = \{\frac{\partial g_\gamma}{\partial z_\gamma}\} \) is a 1-cochain with coefficients in \(\Theta_S \). For the coboundary map \(\delta \), \(\delta\{\tilde{g}_\alpha\} \) is the cup product of \(\tilde{f} \) with \(c_1(L) \). Note that \(c_1(L) = \{g_\alpha^{-1} dg_\alpha\} \in H^1(S, \Omega^1_S) \).

\[\sigma = \{(\tilde{f}_\alpha, \tilde{g}_\alpha)\} \]

defines a 1-cocycle with coefficients in the extension \(M \) of \(\Theta_S \) by \(\Theta_S \), i.e., \(M \) is defined by the exact sequence

\[0 \to \Theta_S \to M \to \Theta_S \to 0, \]

with the extension class \(c_1(L) \). But \(M = P_1(L)^* \otimes L \). So

\[(\sigma) \in H^1(S, P_1(L)^* \otimes L). \]
Proof of Theorem 1. Let $\tilde{\Sigma}_n = \{(S, L) \mid S \in \Sigma_n, \text{and } L \in \text{Pic}(S)\}$, and let $\pi : (S, L) \mapsto S$ be a projection. For $(S, L) \in \tilde{Y}_n$, we have a commutative diagram

$$
\begin{array}{ccc}
T_{(S, L)}(\tilde{Y}_n) & \xrightarrow{\pi_*} & T_S(Y_n) \\
\downarrow & & \downarrow \\
H^1(S, P_1(L)^* \otimes L) & \xrightarrow{h_1} & H^1(S, \Theta_S)
\end{array}
$$

where h_1 sits in the long exact sequence on cohomology

$$
\rightarrow H^1(S, P_1(L)^* \otimes L) \xrightarrow{h_1} H^1(S, \Theta_S) \xrightarrow{h_2} \cdots .
$$

Fix $(S, L) \in \tilde{\Sigma}_n$ with $c_1(L) \in H_{pr}^{1,1}(S)$. Let Z be the union of all irreducible components of $\tilde{\Sigma}_n$ containing (S, L). The image $T(Z)$ of the Zariski tangent space $T_S(\pi(Z))$ of $\pi(Z)$ at S under ρ is in the kernel of h_2, i.e.,

$$
\rho(T_S(Y_n)) \otimes H_{pr}^{1,1}(S) \xrightarrow{\cup} H^2(S, \Theta_S),
$$

$$
T(Z) \otimes H^0(S, K_S) \mapsto 0.
$$

Equivalently,

$$
\rho(T_S(Y_n)) \otimes H^0(S, K_S) \xrightarrow{\cup} H_{pr}^{1,1}(S)^*,
$$

(2.7)

$$
T(Z) \otimes H^0(S, K_S) \mapsto c_1(L). \downarrow
$$

Using the notations in the diagram (2.5), we set $T' = \gamma_2^{-1} \circ \beta^{-1}(T(Z)) \subset H^0(\mathbb{P}^n, E)$. Then $T' \supset \gamma_2^{-1}(\text{im } \alpha) \supset \ker \gamma_2$ and the following holds:

Claim. If $S = \bigcap_{i=1}^{m-2} \{F_i = 0\}$, and F_i is a homogeneous polynomial of degree d_i such that $\bigcap_{i=1}^{k} \{F_i = 0\}$ is nonsingular for each k with $d_k < d_{k+1}$, then the evaluation map $T' \otimes \mathcal{O}_{\mathbb{P}^n,x} \rightarrow E_x$ is surjective at every $x \in \mathbb{P}^n$.

To see this, let $e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{C}^{n-2}$ denote the ith coordinate vector, for $i = 1, \ldots, n-2$. Then

$$
\ker \gamma_2 \supset \{F_k G_k e_k | G_k \in H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d_k - d_i)) , \quad d_k > d_i, \text{ and } i = 1, \ldots, n-2\}.
$$

We note that

$$
\gamma_2^{-1}(\text{im } \alpha) \supset \left\{ z_i \left(\frac{\partial F_1}{\partial z_j}, \ldots, \frac{\partial F_{n-2}}{\partial z_j} \right) \mid l, j = 0, 1, \ldots, n \right\}.
$$

For a fixed $x \in \mathbb{P}^n$, let i_0 denote the smallest number such that $x \in \{F_{i_0} \neq 0\}$. Then (i) $i_0 = 1$, or (ii) $i_0 > 1$ and $d_{i-1} < d_{i}$, or (iii) $i_0 > 1$ and $d_{i-1} = d_{i}$.

We will show that the evaluation map at x is surjective in any case.

Case (i): If $i_0 = 1$, then we can choose $G_k \in H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d_k - d_i))$, $k = 1, \ldots, n-2$ so that $G_k(x) \neq 0$ for each k. So $\{F_k(x) G_k(x) e_k | k = 1, \ldots, n-2\}$ are $n-2$ linearly independent elements in E_x.
Case (ii): If \(i_0 > 1 \) and \(d_{i_0 - 1} < d_{i_0} \), then by the hypothesis of the claim
\[
\bigcap_{i=1}^{i_0-1} \{ F_i = 0 \}
\]
has no singularity and so there is a nonvanishing \((i_0 - 1) \times (i_0 - 1)\) minor of a matrix
\[
\begin{pmatrix}
\frac{\partial F_i}{\partial z_j} \\
\vdots \\
\frac{\partial F_{i}}{\partial z_j}
\end{pmatrix}
\]
\(i = 1, \ldots, i_0 - 1\)
\(j = 0, 1, \ldots, n\)
say
\[
\begin{pmatrix}
\frac{\partial F_i}{\partial z_j} \\
\vdots \\
\frac{\partial F_{i}}{\partial z_j}
\end{pmatrix}
\]
\(i = 1, \ldots, i_0 - 1\)
\(j = 1, \ldots, j_{i_0 - 1}\)
which has rank \(i_0 - 1 \). Moreover, there is some \(m \) such that \(z_m(x) \neq 0 \). We can choose \(G_k \in H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d_k - d_{i_0})) \) for \(k = i_0, i_0 + 1, \ldots, n - 2 \) so that \(G_k(x) \neq 0 \) for each \(k \). Then
\[
\left\{ z_m \left(\frac{\partial F_{i}}{\partial z_j}, \ldots, \frac{\partial F_{n-2}}{\partial z_j} \right) \mid j = j_1, \ldots, j_{i_0 - 1} \right\}
\]
\[
\cup \left\{ F_i G_k e_k \mid k = i_0, i_0 + 1, \ldots, n - 2 \right\}
\]
provides \(n - 2 \) linearly independent elements in \(E_x \) when evaluated at \(x \).

Case (iii): If \(i_0 > 1 \) and \(d_{i_0 - 1} = d_{i_0} \), let \(i_1 \) be the smallest number such that \(d_{i_1} = \cdots = d_{i_0 - 1} = d_{i_0} \). Then \(d_{i_1 - 1} < d_{i_1} \) and by the hypothesis of the claim, \(\bigcap_{i=1}^{i_1-1} \{ F_i = 0 \} \) has no singularity. So, as in (ii) we can find \(j_1, \ldots, j_{i_1 - 1} \) such that
\[
\begin{pmatrix}
\frac{\partial F_i}{\partial z_j} \\
\vdots \\
\frac{\partial F_{i}}{\partial z_j}
\end{pmatrix}
\]
\(i = 1, \ldots, i_1 - 1\)
\(j = 1, \ldots, j_{i_1 - 1}\)
has rank \(i_1 - 1 \). Let \(G_k \in H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d_k - d_{i_0})) \) be chosen so that \(G_k(x) \neq 0 \) for \(k = i_1, i_1 + 1, \ldots, i_0, \ldots, n - 2 \). Furthermore, there is some \(m \) such that \(z_m(x) \neq 0 \). Hence
\[
\left\{ z_m \left(\frac{\partial F_{i}}{\partial z_j}, \ldots, \frac{\partial F_{n-2}}{\partial z_j} \right) \mid j = j_1, \ldots, j_{i_1 - 1} \right\}
\]
\[
\cup \left\{ F_i G_k e_k \mid k = i_1, i_1 + 1, \ldots, n - 2 \right\}
\]
defines \(n - 2 \) linearly independent vectors in \(E_x \) when evaluated at \(x \).

Thus, in any case, the evaluation map at \(x \) is surjective and the claim follows.

In terms of the identifications in Proposition 2 and (2.6), (2.7) implies that the evaluation map
\[
T' \otimes H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(\mu)) \to H^0(\mathbb{P}^n, E(\mu))
\]
is not surjective. Therefore, by Proposition 1, \(\text{codim} \; T' \geq \sum_{i=1}^{n-2} d_i - n \). But
\[
\text{codim} \; T' \leq \text{codim}_{T_x(Y)} T_S(\pi(Z)) \leq \text{codim}_{X} Z.
\]
Hence the theorem follows.
3. A NEW PROOF OF THE DENSITY THEOREM

In this section, we denote \(d = d_1 \), \(Y = Y_3 \), and \(\text{NL}_d = \Sigma_3 \). Recall (cf. [3]) that the upper bound of the codimension of irreducible components of the Noether-Lefschetz locus \(\text{NL}_d \) in the family \(Y \) of smooth surfaces of degree \(d \) in \(\mathbb{P}^3 \) is the geometric genus \(p_g = \binom{d-1}{3} \) of any surface in \(Y \). We will give a new proof of the following density theorem due to Ciliberto, Harris, and Miranda [5].

Theorem 2. For \(d \geq 4 \), the union of all irreducible components of \(\text{NL}_d \) having codimension \(p_g \) in \(Y \) is dense in the classical topology.

Using an infinitesimal method, we will reduce the theorem to the following proposition.

Proposition 3. For each \(d \geq 4 \), there are some polynomials \(G \in S^{d-4} \) and a surface \(X \in Y \) with defining equation \(F \) such that the map

\[
g : S^{d-4} \to S^{3d-8} / J_F, 3d-8
\]

defined by multiplication by \(G \) is injective.

Proof. Let \(F = z_0^d + z_1^d + z_2^d + z_3^d \) and

\[
G = \sum_{j=0}^{d-2} a_j z_0^j z_1^j z_2^{d-2-j} z_3^{d-2-j},
\]

where the constant coefficients \(a_j \)'s are chosen so that every possible matrix of the form

\[
\begin{pmatrix}
 a_k & a_{k+1} & \cdots & a_{k+m} \\
 a_{k+1} & a_{k+2} & \cdots & a_{k+m+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{k+m} & a_{k+m+1} & \cdots & a_{k+2m}
\end{pmatrix}
\]

(3.1)

has nonzero determinant. Then we claim that \(g \) is injective:

Without loss of generality, we may assume that a nonzero element of the kernel of \(g \) is of the form

\[
P = \sum_{j=m_1}^{m_2} c_j z_0^{p+j} z_1^{q+j} z_2^{r-j} z_3^{s-j},
\]

where \(p + q + r + s = d - 4 \) and \(m_1 < m_2 \). This is because \(G \) belongs to the span of the set of monomials \(z_0^{i_0} z_1^{i_1} z_2^{i_2} z_3^{i_3} \) satisfying the equalities

\[
i_0 = i_1 = d - 2 - i_2 = d - 2 - i_3.
\]

If we therefore break up \(S^{d-4} \) into the span of monomials satisfying

\[
i_0 - i_1 = p - q, \quad i_0 + i_2 = p + r, \quad i_0 + i_3 = p + s,
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(p, q, r, s \) vary but add up to \(d - 4 \), and if we expand an element of \(\ker g \) in terms of these subspaces, then each piece also lies in \(\ker g \).

By symmetry of the role of \(z_0 \) and \(z_1 \), and of \(z_2 \) and \(z_3 \), we may assume \(p \geq q \) and \(r \leq s \). Then the limits of the sum above satisfy \(m_1 \geq -q \) and \(m_2 \leq r \). The condition that

\[
P \cdot G = \sum_{j,k} a_j c_k \varepsilon_j^{j+k+q} \varepsilon_2^{j+k+r} \varepsilon_3^{d-j-k+s} \in J_{d,3d-8}
\]

is equivalent to the system of equations

\[
\sum_{j+k=l} a_j c_k = 0 \quad \text{for} \quad s \leq l \leq d - 2 - p.
\]

Since \(m_1 \geq -p \) and \(m_2 \leq s \), the two inequalities \(m_1 \leq k \leq m_2 \) and \(s \leq k+j \leq d - 2 - p \) imply the inequality \(0 \leq j \leq d - 2 \).

The coefficient matrix for the \(c_k \)’s is

\[
A = \begin{pmatrix}
a_\alpha & a_{\alpha+1} & \cdots & a_\beta \\
a_{\alpha+1} & a_{\alpha+2} & \cdots & a_{\beta+1} \\
\vdots & \vdots & \ddots & \vdots \\
a_\gamma & a_{\gamma+1} & \cdots & a_\delta
\end{pmatrix}
\]

where

\[
\alpha = s - m_2, \quad \beta = s - m_1, \quad \gamma = d - 2 - p - m_2, \quad \delta = d - 2 - p - m_1.
\]

The number of rows is

\[
\gamma - \alpha + 1 = d - 2 - p - s + 1
\]

and the number of columns is

\[
\beta - \alpha + 1 = m_2 - m_1 + 1.
\]

But \((3.2) - (3.3) = d - 2 - p - s - (m_2 - m_1) \geq d - 2 - p - s - (r + q) = 2 \). Therefore, \(g \) is injective provided that the appropriate minors of the matrix of the \(a_j \)’s of the form \((3.1) \) are nonvanishing, and this may be arranged by taking the ratios \(|a_{j+1}/a_j| \) to increase very rapidly with \(j \).

Proof of Theorem 2. For a smooth surface \(X \in Y \), \(X \in NL_d \) if and only if \(H_{pr}^1(X) \cap H^2(X, \mathbb{Z}) \neq 0 \). If there is a nonzero element \(\gamma \in H_{pr}^1(X) \cap H^2(X, \mathbb{Z}) \), then \(m \cdot \gamma \in H_{pr}^1(X) \cap H^2(X, \mathbb{Z}) \) for some integer \(m \) and hence \(X \in NL_d \). For a given \(\gamma \in H_{pr}^1(X) \cap H^2(X, \mathbb{R}) \), there are some elements of \(H^2(X, \mathbb{Q}) \) that are arbitrarily near to \(\gamma \). We will show that one of these rational classes can be made to have type \((1, 1)\) by making a small deformation of \(X \).

We consider the universal family \(\mathcal{F} \) of smooth surfaces of degree \(d \) in \(\mathbb{P}^3 \):

\[
\mathcal{F} \longrightarrow Y \times \mathbb{P}^3
\]

\[
\pi \downarrow
\]

\[
Y
\]
Since π is a proper smooth map with maximal rank everywhere, Ehresmann’s fibration theorem says that on a sufficiently small open neighborhood U of X, there is a fiber preserving diffeomorphism

\[(3.4) \quad \phi: \pi^{-1}(X) \times U \cong \pi^{-1}(U)\]

so that ϕ defines a diffeomorphism $\phi_S: X \to S$ and the induced map on the cohomology $\phi^*_S: H^2(S, C) \to H^2(X, C)$ is an isomorphism for $S \in U$.

Let $R^2\pi_*C$ be the second direct image sheaf of $\pi: \mathcal{F} \to Y$, which we recall is the sheaf associated to the presheaf

\[U \to H^2(\pi^{-1}(U), C),\]

where U runs through the open subsets of Y. Let R^2_{pr} be the kernel of a map

\[L: R^2\pi_*C \to R^4\pi_*C\]

defined as follows: For an open set $U \subset Y$ with $\pi^{-1}(U) \cong \pi^{-1}(X) \times U$ as before,

\[H^2(\pi^{-1}(U), C) \cong H^2(X, C),\]

$L_U: R^2\pi_*C(U) \to R^4\pi_*C(U)$ is the cup product map with the associated $(1, 1)$ form of X.

Then R^2_{pr} is a locally constant sheaf and there is a holomorphic vector bundle \mathcal{K} on Y associated to it, whose fiber over $S \in Y$ is $H^2_{pr}(X, C)$. We have a Hodge filtration $F^2 \subset F^1 \subset F^0 = \mathcal{K}$, and Hodge bundles $\mathcal{K}^{1,1} = F^1/F^2$ and $\mathcal{K}^{0,2} = F^0/F^1$, where the F^p's are holomorphic vector bundles.

For a sufficiently small open neighborhood U of X as in (3.4), we can define a smooth map f_C on the total space of $\mathcal{K}^{1,1}_U$ as

\[f_C: \mathcal{K}^{1,1}_U \mid U = \{(S, \gamma)|S \in U, \gamma \in H^{1,1}_{pr}(S)\} \to H^2_{pr}(X, C),\]

\[(S, \gamma) \mapsto \phi^*_S(\gamma).\]

Then f_C restricts to a map

\[f: \mathcal{K}^{1,1}_U \mid \mathbb{R} = \{(S, \gamma)|S \in U, \gamma \in H^{1,1}_{pr}(S) \cap H^2(S, \mathbb{R})\} \to H^2_{pr}(X, \mathbb{R}).\]

We note that for the map $\pi_1: \mathcal{K}^{1,1} \to Y$, giving the bundle structure on $\mathcal{K}^{1,1}$,

\[\pi_1(f^{-1}(H^2_{pr}(X, \mathbb{Q}))) = NL_d \cap U.\]

First, we will show that f has maximal rank at some $(S_0, \gamma_0) \in \mathcal{K}^{1,1}_U \mid \mathbb{R}$. Then, by the Implicit Function Theorem, this implies that

\[(3.5) \quad \text{there is an element } \gamma_V \in f(V) \cap H^2_{pr}(X, \mathbb{Q}) \text{ for each small open neighborhood } V \text{ of } (S_0, \gamma_0), \text{ and codim } \pi_1(f^{-1}(\gamma_V)) = p_g.\]

In order to make the necessary computation, it is a good idea to distinguish the real tangent space $T_S(U)_R$, the complexified tangent space $T_S(U)_C$, and
the holomorphic tangent space $T_S(U)$. There is of course a natural \mathbb{R}-linear isomorphism $T_S(U) \cong T_S(U)_\mathbb{R}$. Since df takes the tangent space of the fibers of π_1 to $H^{1,1}_{pr}(X) \cap H^2(X, \mathbb{R})$, we obtain an induced \mathbb{R}-linear map

$$\lambda: T_S(U)_\mathbb{R} \rightarrow \frac{H^{2,0}_{pr}(X, \mathbb{R})}{H^{1,1}_{pr}(X) \cap H^2(X, \mathbb{R})} \cong (H^{2,0}(X) \oplus H^{0,2}(X)) \cap H^2(X, \mathbb{R})$$

having maximal rank if and only if f does. Under the \mathbb{R}-linear identifications $T_S(U)_\mathbb{R} \cong T_S(U)$ and

$$(H^{2,0}(X) \oplus H^{0,2}(X)) \cap H^2(X, \mathbb{R}) \cong H^{0,2}(X),$$

the map λ is identified with the derivative of the period map

$$T_S(U) \rightarrow H^{0,2}(X).$$

By the work of Griffiths [14], the derivative of the period map is the composition of the Kodaira-Spencer map ρ with the cup product with γ, i.e.

$$T_S(Y) \xrightarrow{\rho} H^1(S, \Theta_S) \xrightarrow{\cup \gamma} H^{0,2}(S).$$

Thus λ, and hence f, has maximal rank if and only if

$$\cup \gamma: \rho(T_S(Y)) \rightarrow H^{0,2}(S)$$

is surjective, or equivalently,

$$(3.6) \quad H^{2,0}(S) \xrightarrow{\cup \gamma} \rho(T_S(Y))^* \text{ is injective.}$$

Referring to (2.6),

$$\rho(T_S(Y)) \simeq S^d / J_{F, d},$$

where F is the defining equation of S. By Macaulay’s theorem (see, e.g., [9, Theorem 2.15]),

$$(\rho(T_S(Y)))^* \simeq S^{3d-8} / J_{F, 3d-8}.$$

In terms of the identifications in (2.1) and above, the above map (3.6) is injective if the multiplication map

$$g: S^{d-4} \rightarrow S^{3d-8} / J_{F, 3d-8}$$

is injective, where g is the multiplication by $G(\gamma) \in S^{2d-4}$ corresponding to γ. By Proposition 3, g is injective at (S_0, γ_0), where

$$S_0 = \{z_0^d + z_1^d + z_2^d + z_3^d = 0\}$$

and γ_0 corresponds to $G \in S^{2d-4} / J_{F, 2d-4}$ with some fixed real coefficients a_i’s, and hence $\gamma_0 \in H^{1,1}_{pr}(S_0) \cap H^2(S_0, \mathbb{R})$. So f has maximal rank p_g at (S_0, γ_0).
In fact, \(\rho \) composed with the cup product map \(\cup \gamma \) gives rise to a holomorphic map of vector bundles on \(\mathcal{H}^{1,1} \) so that we can define a map

\[
\sigma : \mathcal{H}^{1,1} \to \Theta_Y^* \otimes \mathcal{H}^{0,2},
\]

\[
(S, \gamma) \mapsto \sigma(S, \gamma) : \Theta_Y \to \mathcal{H}^{0,2}.
\]

The locus \(A \) where \(\sigma(S, \gamma) \) drops rank is an analytic subvariety of \(\mathcal{H}^{1,1} \). Since \(\sigma(S_0, \gamma_0) \) has maximal rank \(p_g \), \(A \) is proper. Since \(f \) has maximal rank at \((S_0, \gamma_0) \), \(A \cap \mathcal{H}^{1,1}_R \) is also proper, where \(\mathcal{H}^{1,1}_R = \{(S, \gamma) | \gamma \in H^{1,1}_p(S) \cap H^2(S, \mathbb{R}) \} \). Hence, (3.5) holds for every \((S, \gamma) \in \mathcal{H}^{1,1} \) and the theorem follows.

References

12. , Griffiths' infinitesimal invariant and the Abel-Jacobi map, Preprint.
13. , Koszul cohomology and geometry, Preprint.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024

Current address: 56 Stephen Hopkins Court, Providence, R.I. 02904