ULTRA-IRREDUCIBILITY OF INDUCED REPRESENTATIONS OF SEMIDIRECT PRODUCTS

HENRIK STETKÆR

Abstract. Let the Lie group G be a semidirect product, $G = SK$, of a connected, closed, normal subgroup S and a closed subgroup K. Let Λ be a nonunitary character of S, and let K_Λ be its stability subgroup in K. Let $I^{\Lambda\mu}$, for any irreducible representation μ of K_Λ, denote the representation $I^{\Lambda\mu}$ of G induced by the representation $\Lambda\mu$ of SK_Λ. The representation spaces are subspaces of the distributions.

We show that $I^{\Lambda\mu}$ is ultra-irreducible when the corresponding Poisson transform is injective, and find a sufficient condition for this injectivity.

I. Introduction

Let G be a Lie group which is a semidirect product, $G = SK$, of a connected, closed, normal subgroup S and a compact subgroup K. Let Λ be a continuous homomorphism of S into $\mathbb{C}\setminus\{0\}$, and let $M := K_\Lambda$ be its stability subgroup in K. For any continuous irreducible representation μ of M on a complex vector space $H(\mu)$ we shall consider the representation $I^{\Lambda\mu}$ of G induced by the representation $\Lambda\mu$ of SM. $I^{\Lambda\mu}$ is a (not necessarily unitary) representation of G on a subspace of the Hilbert space $L^2(K, H(\mu))$, viz. on the subspace $L^2_\mu(K, H(\mu))$ consisting of the vectors f which satisfy the covariance condition

\[f(mk) = \mu(m)[f(k)] \quad \text{for } m \in M \text{ and } k \in K. \]

The classical unitary theory, which will not be discussed here, is primarily due to Mackey. The special case of the Cartan motion group is treated in detail in [Gi]. In the nonunitary case several authors have studied the question of irreducibility of $I^{\Lambda\mu}$: [Th, Wi, Ra] are concerned with topological irreducibility for general semidirect products, and [CD] with topologically complete irreducibility in the case of the Cartan motion group. Nonunitary representations of the Cartan motion group on eigenspaces of invariant differential operators are studied in [He].
The present paper deals with the stronger notion of ultra-irreducibility of $I^{\Lambda \mu}$ for general semidirect products with applications to the Cartan motion group, and the subgroup K need no longer be compact.

Our point of view is that there is no need for the Hilbert space frame once we accept nonunitary representations. Any $I^{\Lambda \mu}$-invariant space E of functions or distributions on K satisfying (*) should be studied; the space of square integrable functions satisfying (*) is just a special case. More precisely we let E be an $I^{\Lambda \mu}$-invariant subspace of the distributions $\mathcal{D}'(K, H(\mu))$ such that

$$C^\infty_\mu(K, H(\mu)) \subset E \subset \mathcal{D}'_\mu(K, H(\mu)),$$

where the subscript μ indicates that the elements should satisfy (*). Particular cases are the extreme ones $C^\infty_\mu(K, H(\mu))$, $\mathcal{D}'_\mu(K, H(\mu))$ and

$$E = C^\infty_\mu(K, H(\mu)), L^p_\mu(K, H(\mu))$$
for K compact and $1 \leq p < \infty$.

If $I^{\Lambda \mu}$ is ultra-irreducible on one of the $I^{\Lambda \mu}$-invariant spaces between $C^\infty_\mu(K, H(\mu))$ and $\mathcal{D}'_\mu(K, H(\mu))$, it is so on all the others (Theorem II.6).

We define a Poisson transform for a semidirect product as above, and find a sufficient, algebraic condition on it to be injective (Theorem IV.2). The condition is weaker than certain of the conditions found in the literature (e.g., [Th, Theorem 4; Wi, Theorem 5.3; Ra, §2.4]) and holds for the Cartan motion group.

By help of Litvinov and Lomonosov's version of Burnside's theorem [LL1] we establish that, when the Poisson transform is injective, then the representation $I^{\Lambda \mu}$ is ultra-irreducible (Theorem V.2).

Finally we get as a corollary of the above results that those representations of the Cartan motion group which are studied by Champetier and Delorme in [CD], are ultra-irreducible (Theorem VI.1).

II. Group representations on locally convex spaces

A. Notation, terminology and basic facts. By a locally convex space we shall in this paper mean a locally convex, Hausdorff, topological vector space over the field of the complex numbers \mathbb{C}.

Let E be a locally convex space. Its strong topological dual will be denoted by E'. Furthermore $L(E)$, resp. $S(E)$, resp. $B(E)$, denotes the vector space of those linear maps of E into E, which are continuous, resp. are continuous with respect to the weak topology $\sigma(E, E')$, resp. map the bounded subsets of E into bounded subsets.

The ultraweak topology is the weakest locally convex topology on $B(E)$ for which the linear functionals

$$T \to \sum_{j=1}^\infty \lambda_j \langle Te_j, e'_j \rangle$$

on $B(E)$ are continuous. Here $\{\lambda_j\}$ ranges over $l^1(\mathbb{N})$, and $\{e_j\}$ and $\{e'_j\}$ range over the bounded sequences in E and E' respectively. A subset A of $B(E)$, equipped with the ultraweak topology, will be denoted A_{uw}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
A representation π of a group G on a locally convex space E is (here) a homomorphism of G into the group of invertible elements of $L(E)$. π is said to be ultra-irreducible if $\text{span}\{\pi(G)\}$ is dense in $S(E)_{uw}$. If so, then π is also topologically completely irreducible and hence topologically irreducible, too; also the commutant algebra $\pi(G)'$ reduces to the scalars.

A sufficient condition for ultra-irreducibility can be found as Corollary 8 of [LL1] or in [LL2]. It is an infinite dimensional version of Burnside's theorem.

Theorem 1 (Litvinov-Lomonosov). Let E be a locally convex space with the property that the Fredholm operators on it possess a well-defined trace. Then a topologically irreducible representation π of a group G on E is ultra-irreducible if the closure of $\text{span}\{\pi(G)\}$ in $L(E)_{uw}$ contains a nonzero compact operator.

If π is a strongly continuous representation of a Lie group K with right Haar measure dk on a locally convex space E, then we put

$$\pi(\phi)u := \int_K \phi(k)\pi(k)u\,dk \quad \text{for } \phi \in C_0^\infty(K), \, u \in E,$$

where the integral is defined weakly as a linear functional on E'.

Proposition 2. Let π be a strongly continuous representation of a Lie group K on a semicomplete, locally convex space E. Then

1. $\pi(\phi) \in B(E)$ for all $\phi \in C_0^\infty(K)$.
2. A closed subspace of E is invariant under $\pi(K)$ iff it is invariant under $\pi(C_0^\infty(K))$.
3. $\text{span}\{\phi(e)|\phi \in C_0^\infty(K), \, e \in E\}$ is dense in E.
4. $\text{span}\{\pi(K)\}$ and $\pi(C_0^\infty(K))$ have identical closures in $B(E)_{uw}$.

B. The abstract set-up and consequences. Throughout this subsection we enforce the conditions of the Abstract Set-Up below.

The Abstract Set-Up 3. C and E are semicomplete, locally convex spaces. C is a subspace of E and the inclusion map $i: C \subset E$ is continuous. G is a Lie group, K is a Lie subgroup of G and dk denotes a right Haar measure on K.

π_C is a strongly continuous representation of G on C that extends to a strongly continuous representation π of G on E in such a way that the following holds:

$\pi(\phi)C \subset C$ for each $\phi \in C_0^\infty(K)$ and the corresponding map $\pi_C^E(\phi)$ of E into C is continuous.

Easy consequences are that $\pi(\phi) \in L(E)$ and $\pi_C^E(\phi) \in L(C)$ for any $\phi \in C_0^\infty(K)$, and the following two lemmas:

Lemma 4 (The approximation lemma). If W is a closed, invariant subspace of E, then $W \cap C$ is dense in W.

Lemma 5. Let W be an invariant subspace of C. Then W is dense in C iff it is dense in E.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 6. \(\pi \) is ultra-irreducible iff \(\pi_C \) is also.

Proof. We shall only give the if part, because the other one can be treated quite similarly. So assume \(\pi_C \) is ultra-irreducible. To prove \(\pi \) is ultra-irreducible it suffices by the Hahn-Banach theorem to check the following implication for given \(u \in [B(E)]_u \):

\[
\langle u, \pi(g) \rangle = 0 \quad \text{for all } g \in G
\]

implies

\[
\langle u, T \rangle = 0 \quad \text{for all } T \in S(E).
\]

Let (1) be given. We then get

\[
\langle u, \pi(g)\pi(k) \rangle = 0 \quad \text{for all } g \in G \text{ and } k \in K.
\]

Composition by an element from \(S(E) \), in particular by \(\pi(g) \), is continuous with respect to the ultraweak topology, so from Proposition 2(\(\delta \)) we get that

\[
\langle u, \pi(g)\pi(\phi) \rangle = 0 \quad \text{for all } g \in G \text{ and } \phi \in C_0^\infty(K),
\]

which tells us that the linear functional \(T_C \rightarrow \langle u, i \circ T_C \circ \pi_E(\phi) \rangle \) on \(B(C) \) vanishes on \(\pi_C(G) \subset L(C) \). By the ultra-irreducibility of \(\pi_C \) it vanishes on all of \(S(C) \), so

\[
\langle u, i \circ T_C \circ \pi_E(\phi) \rangle = 0 \quad \text{for all } T_C \in S(C).
\]

Given \(T \in S(E) \) we replace \(T_C \) in (3) by \(\pi_E(\phi_1) \circ T \circ i \in S(C) \), where \(\phi_1 \in C_0^\infty(K) \) is arbitrary, to get

\[
0 = \langle u, i \circ \pi_E(\phi_1) \circ T \circ \pi_E(\phi) \rangle
= \langle u, \pi(\phi_1) \circ T \circ \pi(\phi) \rangle.
\]

The continuity of left and right compositions by elements from \(L(E) \) combined with Proposition 2(\(\delta \)) now ensures that (2) holds. \(\square \)

III. The representations \(I^\Delta \) and \(I^{\Delta \mu} \)

Throughout this section \(G \) denotes a second countable Lie group which is the semidirect product \(G = S \ltimes K \) of a normal, closed, and connected subgroup \(S \) with a closed subgroup \(K \). We let \(V \) be a finite-dimensional complex vector space.

We give \(C^\infty(K, V) \) and \(C_0^\infty(K, V) = \mathcal{D}(K, V) \) their usual topologies (Fréchet space and LF-space respectively) and put \(\mathcal{D}'(K, V) := \left[\mathcal{D}(K, V')\right]' \). We identify \(C^\infty(K, V) \) as a dense subspace of \(\mathcal{D}'(K, V) \) via the natural continuous injection map \(i: C^\infty(K, V) \subset \mathcal{D}'(K, V) \) given by

\[
\langle if, \psi \rangle := \int_K \langle f(k), \psi(k) \rangle dk \quad \text{for } f \in C^\infty(K, V), \ \psi \in C_0^\infty(K, V').
\]

We note that \(C^\infty(K, V) \) and \(\mathcal{D}'(K, V) \) are \(C^\infty(K) \)-modules.
Let Λ be a continuous homomorphism from S to $C\setminus\{0\}$. By Lie group theory, $\Lambda \in C^\infty(S)$. We define a continuous representation I^Λ of G on $C^\infty(K, V)$ by (cf. [Wi, formula (2.8), p. 72])

$$(1) \quad [I^\Lambda(sk)f](k_1) := \Lambda(k_1sk^{-1})f(k,k)$$

for $(s,k_1) \in S \times K$ and $f \in C^\infty(K, V)$.

Definition 1. For $u \in \mathcal{D}'(K, V)$, $\phi \in C_0^\infty(K, V')$ and $(s,k) \in S \times K$ we put

$$(2) \quad \langle I^\Lambda(sk)u, \phi \rangle := \langle u, I^\Lambda(k^{-1}s)\phi \rangle.$$

I^Λ, defined by (2), is a continuous representation of G on $\mathcal{D}'(K, V)$, extending the representation (1) on $C^\infty(K, V)$. The stability subgroup

$$M = K_\Lambda := \{ k \in K | \Lambda(ksk^{-1}) = \Lambda(s) \text{ for all } s \in S \}$$

is a closed subgroup of K. Let μ be a continuous, topologically irreducible representation of M on a complex finite dimensional vector space $V = H(\mu)$. M acts on $C^\infty(K, H(\mu))$ (or more generally on functions from K to $H(\mu)$) by

$$(3) \quad [m \cdot \phi](k) := \mu(m)\phi(m^{-1}k)$$

for $m \in M$, $k \in K$, $\phi \in C^\infty(K, H(\mu))$.

ϕ is a fixed point iff ϕ satisfies the covariance condition (*) from the Introduction.

The action of M extends to a continuous representation of M on $\mathcal{D}'(K, H(\mu))$ which commutes with I^Λ and multiplication by functions from $C^\infty(M\setminus K)$. The vector space

$$\mathcal{D}' := \{ u \in \mathcal{D}'(K, H(\mu)) | m \cdot u = u \text{ for all } m \in M \},$$

$$C_\mu^\infty := C^\infty(K, H(\mu)) \cap \mathcal{D}'$$

and $C(K, H(\mu))$ respectively. We equip them with the topologies from

$$\mathcal{D}'(K, H(\mu)), C^\infty(K, H(\mu))$$

are therefore invariant under I^Λ and multiplication by functions from $C^\infty(M\setminus K)$. They are closed subspaces of $\mathcal{D}'(K, H(\mu))$, $C^\infty(K, H(\mu))$ and $C(K, H(\mu))$ respectively. The restriction $I^\Lambda\mu$ of I^Λ from $\mathcal{D}'(K, H(\mu))$ to \mathcal{D}_μ' is then a continuous representation of G on \mathcal{D}_μ'; restricting further we get that $I^\Lambda\mu$ defines a continuous representation (again denoted $I^\Lambda\mu$) of G on C^∞.

Remark 2. The Abstract Set-Up holds here with $C = C_\mu^\infty$, $E = \mathcal{D}_\mu'$ and $\pi = I^\Lambda\mu$.

There is a continuous projection p of $C^\infty(K, H(\mu))$ onto C_μ^∞. It can be constructed as follows: Choose $\theta \in C^\infty(K)$ such that $\text{supp}\{m \rightarrow \theta(mk) | k \in Q\}$ is compact for any compact subset Q of K and such that

$$\int_M \theta(mk) \, dm = 1 \quad \text{for each } k \in K.$$
Then
\[(P^k)(k) := \int_M \theta(mk)\mu(m)^{-1}\{f(mk)\} dm ,\]
where \(dm \) is a right Haar measure on \(M \), works.

Our final result of this section is the first place in which the irreducibility of \(\mu \) is used. So far \(\dim H(\mu) < \infty \) has sufficed (cf. [Wi, Lemma 3.1; Th, Lemma 3]).

Lemma 3. If \(\mathcal{A} \) is a dense subset of \(C^\infty(M\backslash K) \) and \(w \in C^\infty_\mu \setminus \{0\} \), then \(\text{span}\{aI^\Lambda(k)w | a \in \mathcal{A}, k \in K\} \) is dense in \(C^\infty_\mu \).

Proof. Since the map \(a \to af \) for any fixed \(f \in C^\infty_\mu \) is continuous from \(C^\infty_\mu (M \backslash K) \) into \(C^\infty_\mu \) we get that the closure of \(\text{span}\{aI^\Lambda(k)w | a \in \mathcal{A}, k \in K\} \) contains \(\text{span}\{\phi I^\Lambda(k)w | \phi \in C^\infty_\mu (M \backslash K), k \in K\} \), so that we may assume that \(\mathcal{A} = C^\infty_\mu (M \backslash K) \). But in that case \(\text{span}\{aI^\Lambda(k)w | a \in \mathcal{A}, k \in K\} \) contains \(P(\text{span}\{\phi I^\Lambda(k)w | \phi \in C^\infty_\mu (K), k \in K\}) \). Since \(P \) is surjective it suffices to prove that \(\text{span}\{\phi I^\Lambda(k)w | \phi \in C^\infty_\mu (K), k \in K\} \) is dense in \(C^\infty_\mu (K, V) \).

Replacing \(w \) by a suitable translate we may assume that \(w(e) \neq 0 \).

We shall show that the annihilator in \(C^\infty_\mu (K, V)' \) of
\[\text{span}\{\phi I^\Lambda(k)w | \phi \in C^\infty_\mu (K), k \in K\}\]
is \(\{0\} \).

By Lemma II.4 it suffices to prove that if \(U \in C^\infty_0(K, V') \) is in the annihilator then \(U = 0 \). So assume that \(U \) is in the annihilator. Then for all \(a \in C^\infty_\mu (K) \) and \(k_0 \in K \) we have
\[0 = \langle U, aI^\Lambda(k_0)w \rangle = \int_K \langle U(k), a(k)(I^\Lambda(k_0)w)(k) \rangle dk \]
\[= \int_K a(k)\langle U(k), (I^\Lambda(k_0)w)(k) \rangle dk ,\]
so
\[0 = \langle U(k), (I^\Lambda(k_0)w)(k) \rangle = \langle U(k), w(kk_0) \rangle \quad \text{for all} \quad k, k_0 \in K .\]
Choosing \(k_0 \) suitably we get for any \(m \in M \) that
\[0 = \langle U(k), w(m) \rangle = \langle U(k), \mu(m)[w(e)] \rangle .\]
Choosing \(k_0 \) suitably we get for any \(m \in M \) that
\[0 = \langle U(k), w(m) \rangle = \langle U(k), \mu(m)[w(e)] \rangle .\]
Since \(w(e) \neq 0 \) and \(\mu \) is irreducible we get that \(U(k) = 0 \). But \(k \in K \) was arbitrary. \(\Box \)

IV. The Poisson transform

The situation and notation are as in §III.

The Lie group \(G \) is the semidirect product of a normal, closed and connected subgroup \(S \) with a closed subgroup \(K \). \(\mathfrak{e} \) will denote the Lie algebra of \(K \).
and \(L(S) \) that of \(S \). \(\Lambda \) is a smooth homomorphism of \(S \) into \(\mathbb{C}\setminus \{0\} \), and \(M \) denotes the stability subgroup \(M = K \Lambda \).

We assume that there exists an \(\text{Ad}(K) \)-invariant inner product \(\langle \cdot, \cdot \rangle \) on \(L(S) \), and extend it to \(L(S)^C \). Define \(d\Lambda \in L(S)^C \) by (cf. [Wi, p. 70])

\[
\Lambda(\exp X) = e^{\langle X, d\Lambda \rangle} \quad \text{for } X \in L(S),
\]

define the functions \(\phi_{d\Lambda, Z} \in C^\infty(M\setminus K) \) for \(Z \in L(S)^C \) by

\[
\phi_{d\Lambda, Z} := e^{\langle \text{Ad}(k)Z, d\Lambda \rangle} \quad \text{for } k \in K,
\]

and define the \(K \)-invariant, point separating subalgebras

\[
\mathcal{A}_0(d\Lambda) := \text{span}\{\phi_{d\Lambda, Z} | Z \in L(S)\}, \quad \mathcal{A}(d\Lambda) := \text{span}\{\phi_{d\Lambda, Z} | Z \in L(S)^C\}
\]

of \(C^\infty(M\setminus K) \) [Wi, p. 74 and Proposition 4.4]. Note that \(\mathcal{A}_0(d\Lambda) \) and \(\mathcal{A}(d\Lambda) \) have the same closures in \(C^\infty(M\setminus K) \) (cf. the proof of Proposition 1 below).

We will for brevity write \(k \cdot Z \) for \(\text{Ad}(k)Z \), and \(X \cdot Z \) for the action of \(X \in \mathfrak{t} \) on \(Z \in L(S)^C \).

Let \(\sigma \) be a smooth volume element on \(M\setminus K \) and let \(\rho \in C^\infty(M\setminus K \times K) \) be the function satisfying

\[
\int_{M\setminus K} \psi(xk)d\sigma(x) = \int_{M\setminus K} \psi(x)\rho(x, k)d\sigma(x) \quad \text{for all } \psi \in C^\infty_0(M\setminus K).
\]

We define the Poisson transformation \(P = P_{d\Lambda} : C^\infty_0(M\setminus K) \to C^\infty(L(S)) \) by

\[
(Pf)(X) := \int_{M\setminus K} \phi_{d\Lambda, X}(x)f(x)d\sigma(x) \quad \text{for } X \in L(S).
\]

Proposition 1. \(P \) is injective iff \(\mathcal{A}(d\Lambda) \) is dense in \(C^\infty(M\setminus K) \). This is in particular the case if \(\mathcal{A}(d\Lambda) \) is closed under complex conjugation.

Proof. Assume first that \(\mathcal{A}(d\Lambda) \) is dense in \(C^\infty(M\setminus K) \) and that

\[
\int_{M\setminus K} \phi_{d\Lambda, X}(x)f(x)d\sigma(x) = 0 \quad \text{for some } f \in C^\infty_0(M\setminus K).
\]

Since the map \(Z \to \int_{M\setminus K} \phi_{d\Lambda, Z}(x)f(x)d\sigma(x) \) is holomorphic on \(L(S)^C \) and vanishes on the real part \(L(S) \) of \(L(S)^C \), it vanishes everywhere. So

\[
\int_{M\setminus K} \phi_{d\Lambda, Z}(x)f(x)d\sigma(x) = 0 \quad \text{for all } Z \in L(S)^C.
\]

Since \(\mathcal{A}(d\Lambda) \) is dense in \(C^\infty(M\setminus K) \), \(f \) has to be 0.

Assume conversely that \(P \) is injective. By the Hahn-Banach theorem we shall show the following: If \(f \in \mathcal{E}'(M\setminus K) \) annihilates \(\mathcal{A}(d\Lambda) \) then \(f = 0 \).

By the Approximation Lemma II.4 we may assume that \(f \in C^\infty_0(M\setminus K) \). So we know that

\[
\int_{M\setminus K} \phi_{d\Lambda, Z}(x)f(x)d\sigma(x) = 0 \quad \text{for all } Z \in L(S)^C.
\]
By the injectivity of P we see that $f = 0$ as desired.

The last statement follows from Stone-Weierstrass' theorem and Lemma II.5. □

The papers [Th, Wi and Ra] contain various sufficient conditions for $\mathcal{A}(d\Lambda)$ to be dense in $C^\infty(M \setminus K)$ when K is compact. (Note that $\mathcal{A}(d\Lambda)$ is dense in $C^\infty(M \setminus K)$ iff it is dense in $L^2(M \setminus K)$ (Lemma II.5).)

[He, CD and Ko] show that the Poisson transform is injective when G is the Cartan motion group. We present an extension to semidirect products, using an idea due to Koranyi [Ko]:

Theorem 2. The Poisson transform is injective if

$$\langle X \cdot d\Lambda, d\Lambda \rangle = 0 \quad \text{for all } X \in \mathfrak{k}. \quad (2)$$

Remarks. (i) Condition (2) is automatically satisfied in the case of the Cartan motion group. (Combine (a) and (b), p. 295, of [Ko]. It hinges on the fact that $\text{Re} \Lambda$ and $\text{Im} \Lambda$ commute, both being in the (maximal) commutative subalgebra a.)

(ii) [Wi, Theorem 5.3, p. 78] proves that $\mathcal{A}(d\Lambda)$ is dense in $C(M \setminus K)$ if the function $k \to \langle k \cdot d\Lambda, d\Lambda \rangle$ is real-valued and K is compact. A particular case occurs if $d\Lambda$ is proportional to a vector in $L(S)$ [Th, Theorem 4]. Our condition (2) is weaker.

(iii) Another connection is to vectors of minimal length (cf. [KN]): If $d\Lambda$ is of minimal length with respect to $K^\mathbb{C}$ then (2) holds, (see also [Ra, §2.4]).

Proof of Theorem. Let $m := \frac{1}{2} \dim M \setminus K$ and $o := M1 \in M \setminus K$. We shall apply the method of stationary phase for complex-valued phase functions (Theorem 2.3 of [MS] or formula (X.3.5), p. 536, of [Tr]) to prove $\exp(-it\langle d\Lambda, d\Lambda \rangle)$ times the integral

$$P_{d\Lambda}(f)(td\Lambda) = \int_{M \setminus K} e^{t(x \cdot d\Lambda, d\Lambda)} f(x) d\sigma(x) \quad \text{as } t \to \infty, \quad \text{where } f \in C^\infty_0(M \setminus K),$$

behaves asymptotically as $ct^{-m}f(o)$, where c is a nonzero constant that does not depend on f. To that purpose we introduce the function $a \in C^\infty(M \setminus K)$ defined by

$$a(x) := i\{\langle d\Lambda, d\Lambda \rangle - \langle x \cdot d\Lambda, d\Lambda \rangle \} \quad \text{for } x \in M \setminus K,$$

and shall then prove that

$$\int e^{ita(x)} f(x) d\sigma(x) \approx ct^{-m}f(o) + \cdots \quad \text{as } t \to \infty.$$

Since K acts by orthogonal transformations we see that

$$\text{Im } a \geq 0 \quad \text{with equality only at } x = 0, \quad (3)$$

because $M = \{k \in K | k \cdot d\Lambda = d\Lambda\}$ [Wi, Proposition 4.3, p. 74].

For any $X \in \mathfrak{k}$ we have

$$Xa = -i \frac{d}{dt} \big|_{t=0} \langle \exp(tX) \cdot d\Lambda, d\Lambda \rangle = -i \langle X \cdot d\Lambda, d\Lambda \rangle = 0.$$
by our assumption (2), so \(x = o \) is a critical point of \(a \). For any \(X \in \mathfrak{t} \) we compute:

\[
\frac{d^2}{dt^2} \bigg|_{t=0} a(M \exp tX) = (-i) \frac{d^2}{dt^2} \bigg|_{t=0} (\exp(tX) \cdot d\Lambda, d\Lambda) \\
= (-i)(X^2 \cdot d\Lambda, d\Lambda) = i |X \cdot d\Lambda|^2.
\]

This is different from zero for any \(X \in \mathfrak{t} \) off the Lie algebra of \(M \), so \(x = o \) is nondegenerate.

Theorem 2.3 of \([MS]\) applies to functions supported in a sufficiently small neighborhood \(U \) of the critical point in question, so let us write \(f = F + f_o \), where \(f_o = f \) near \(o \) and \(\text{supp} f_o \subset U \). It is enough to show that \(F \) contributes nothing to the first term of the formula for the asymptotic behaviour.

By (3) there exists a \(\delta > 0 \) such that \(\text{Im} a \geq \delta \) on \(\text{supp} F \), so

\[
\left| \int e^{ita(x)} F(x) d\sigma(x) \right| \leq \int e^{-t \text{Im} a(x)} |F(x)| d\sigma(x) \leq e^{-t\delta} \int |F(x)| d\sigma(x),
\]

so \(F \) does indeed contribute nothing to the asymptotic expansion.

At last we turn to the Poisson transform. We shall show that

\[
\{ f \in C_0^\infty(M \setminus K) | P_d\Lambda f(X) = 0 \text{ for all } X \in L(S) \} = \{0\}.
\]

The asymptotics show us that \(f(o) = 0 \) for any \(f \) in the left-hand side. If \(f \) belongs to the left-hand side then so does \(I^\Lambda(k)[f \rho(\cdot, k)^{-1}] \) for any \(k \in K \), so

\[
0 = I^\Lambda(k)[f \rho(\cdot, k)^{-1}](o) = f(Mk)\rho(Mk, k)^{-1}
\]
and hence \(f(Mk) = 0 \).

V. A SUFFICIENT CONDITION FOR ULTRA-IRRREDUCIBILITY

The situation is as stated in §IV. Furthermore \(\mu \) is a continuous, irreducible and finite dimensional representation of \(M \) on \(H(\mu) = V \).

Proposition 1. The representation \(I^\Lambda \mu \) of \(G \) is ultra-irreducible on \(C_\mu^\infty \) if \(\mathcal{A}_0(d\Lambda) \) is dense in \(C_\mu^\infty(M \setminus K) \).

Proof. Let \(W \neq \{0\} \) be an invariant subspace of \(C_\mu^\infty \). \(W \) is in particular invariant under \(I^\Lambda \mu(\exp X) = \phi_{d\Lambda, X} \in \mathcal{A}_0(d\Lambda) \), so by Lemma III.3 \(W \) is dense in \(C_\mu^\infty \). This proves that \(I^\Lambda \mu \) is topologically irreducible. We continue by applying the Litvinov-Lomonosov result (Theorem II.1):

\(C_\mu^\infty \) has that property that the Fredholm operators on it have well-defined traces, because there exists a continuous projection \(P \) of \(C_\infty(K, V) \) onto it, and \(C_\infty(K, V) \) has the property (see e.g. \([JS]\)).

Via Proposition II.2(\(\delta \)) we see that

\[
a I^\Lambda \mu(a) \in \text{span}\{\pi(G)\}_{uv}
\]
for any \(a \in \mathcal{A}_0(d\Lambda) \) and \(\phi \in C_0^\infty(K) \), and hence by density even for all \(a \in C_\infty(M \setminus K) \), so it suffices to prove that \(a I^\Lambda \mu(\phi) \) is compact when \(a \in C_0^\infty(M \setminus K) \). Now...
\[a = P(\psi) \text{ for some } \psi \in C^\infty_0(K), \text{ so for any } f \in C^\infty_\mu: \]
\[aI^{\Lambda_\mu}(\phi)f = P(\psi)I^{\Lambda_\mu}(\phi)f = P(\psi I^{\Lambda}(\phi)f). \]

It now suffices to show that \(\psi I^{\Lambda}(\phi): C^\infty(K, V) \to C^\infty(K, V) \) is compact. But here we may assume \(V = \mathbb{C} \) because there is no twisting any longer. \(\psi I^{\Lambda}(\phi) \) is compact as an integral operator with smooth, compactly supported kernel. \(\Box \)

The next theorem, which is our main result, deals with spaces of functions and distributions between \(C^\infty_\mu \) and \(\mathcal{D}_\mu' \) that satisfy the covariance condition (*), e.g. \(C_\mu(K, H(\mu)) \) and, for \(K \) compact, \(L^p_\mu(K, H(\mu)) \) for \(1 \leq p < \infty \).

Theorem 4.11 of [Wi] and Theorem 4 of [Th] are special cases.

Theorem 2. Let \(F \) be a semicomplete, locally convex space which is a subspace of \(\mathcal{D}_\mu' \) such that \(C^\infty_\mu \subset F \subset \mathcal{D}_\mu' \) with continuous inclusions.

Assume that \(F \) is \(I^{\Lambda_\mu} \)-invariant, and that the map \(g \to I^{\Lambda_\mu}(g)|F = I_F(g) \) is a strongly continuous representation of \(G \) on \(F \).

Then \(I_F \) is an ultra-irreducible representation, if the Poisson transform is injective.

Proof. The theorem is an immediate consequence of Proposition 1 in view of Theorem II.6. \(\Box \)

Remark 3. Theorem 1 provides us with a proof of the “double commutant” theorem in [Wi, Theorem 1.3]: Indeed, if \(\mathcal{A}(d\Lambda) \) is closed under complex conjugation then it is dense in \(C^\infty(M\setminus K) \), so \(I^{\Lambda_\mu} \) is ultra-irreducible (Theorem 1) and thus topologically completely irreducible.

Example 4. In case of the Euclidean motion group \((S = \mathbb{R}^n, K = SO(n))\) our condition (2) holds iff \(d\Lambda \) is proportional to a real vector. It is known that for \(n > 2 \) this is necessary and sufficient for \(I^{\Lambda_\tau} \) to be (topologically) irreducible, \(\tau \) being the trivial representation [Ra, 3.5, Exemples]. According to our theorem we even get ultra-irreducibility in that case.

VI. **APPLICATION TO THE CARTAN MOTION GROUP**

Standard notation. Let \(G \) be a semisimple, connected, real Lie group with finite center, and let \(g \) be its Lie algebra. Let \(g = \mathfrak{t} + \mathfrak{p} \) be a Cartan decomposition of \(g \) and \(K \) be the corresponding maximal compact subgroup. \(G_0 := \mathfrak{p} \times_s K \) is the Cartan motion group of (some) affine motions of \(\mathfrak{p} \).

We let \(\mathfrak{a} \) be a maximal abelian subspace of \(\mathfrak{p} \), let \(\lambda: \mathfrak{a} \to \mathbb{C} \) be real-linear, and let \(K^\lambda \) denote the stabilizer of \(\lambda \) in \(K \).

As is usual we extend \(\lambda \) to all of \(\mathfrak{p} \) by setting it \(0 \) on the orthogonal complement of \(\mathfrak{a} \) in \(\mathfrak{p} \) with respect to the Killing form.

We define the continuous homomorphism \(\Lambda: \mathfrak{p} \to \mathbb{C}\setminus\{0\} \) by

\[\Lambda(X) := e^{i\lambda(X)} \text{ for } X \in \mathfrak{p}, \]

and note that \(K^\Lambda = K^\lambda \).
Let μ be a continuous, irreducible representation of K^λ on $H(\mu)$. From formula (III.1) above we get a representation I^λ of G_0 on $C^\infty(K, H(\mu))$ given by

$$[I^\lambda(X, k)f](k') = e^{i\lambda(\text{Ad}(k')X)}f(k'K)$$

for $X \in p$, $k, k' \in K$ and $f \in C^\infty(K, H(\mu))$.

The representation extends to $\mathcal{D}'(K, H(\mu))$ as before.

By the injectiveness of the Poisson transform on the Cartan motion group we get from the previous results:

Theorem 1. Let F be a semicomplete, locally convex space such that $C^\infty \subset F \subset \mathcal{D}'_\mu$ with continuous inclusions.

If F is I^λ-invariant and the restriction I_F of I^λ to F is a strongly continuous representation of G_0 on F, then I_F is ultra-irreducible.

The theorem holds in particular for the representation I^λ on the space $F = L^2(\mu, H(\mu))$, which is the one considered in [CD, Théorème 6, p. 278]. By other methods than ours, [CD] established that I^λ is topologically completely irreducible.

References

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Department of Mathematics, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark