Ultra-irreducibility of induced representations of semidirect products
HTML articles powered by AMS MathViewer
- by Henrik Stetkær
- Trans. Amer. Math. Soc. 324 (1991), 543-554
- DOI: https://doi.org/10.1090/S0002-9947-1991-0974525-3
- PDF | Request permission
Abstract:
Let the Lie group $G$ be a semidirect product, $G = SK$, of a connected, closed, normal subgroup $S$ and a closed subgroup $K$. Let $\Lambda$ be a nonunitary character of $S$, and let ${K_\Lambda }$ be its stability subgroup in $K$. Let ${I^{\Lambda \mu }}$, for any irreducible representation $\mu$ of ${K_\Lambda }$, denote the representation ${I^{\Lambda \mu }}$ of $G$ induced by the representation $\Lambda \mu$ of $S{K_\Lambda }$. The representation spaces are subspaces of the distributions. We show that ${I^{\Lambda \mu }}$ is ultra-irreducible when the corresponding Poisson transform is injective, and find a sufficient condition for this injectivity.References
- C. Champetier and P. Delorme, Sur les représentations des groupes de déplacements de Cartan, J. Functional Analysis 43 (1981), no. 2, 258–279 (French). MR 633979, DOI 10.1016/0022-1236(81)90032-X
- S. G. Gindikin, Unitary representations of groups of automorphisms of Riemannian symmetric spaces of zero curvature, Funkcional. Anal. i Priložen. 1 (1967), 32–37 (Russian). MR 0209405
- Sigurdur Helgason, A duality for symmetric spaces with applications to group representations. III. Tangent space analysis, Adv. in Math. 36 (1980), no. 3, 297–323. MR 577307, DOI 10.1016/0001-8708(80)90019-5
- Jacob Jacobsen and Henrich Stetkær, Spaces in which Fredholm operators have well defined trace, J. Operator Theory 19 (1988), no. 2, 381–386. MR 960988
- George Kempf and Linda Ness, The length of vectors in representation spaces, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978) Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, pp. 233–243. MR 555701
- Adam Korányi, On the injectivity of the Poisson transform, J. Functional Analysis 45 (1982), no. 2, 293–296. MR 647077, DOI 10.1016/0022-1236(82)90024-6
- G. L. Litvinov and V. I. Lomonosov, Density theorems in locally convex spaces and their applications, Trudy Sem. Vektor. Tenzor. Anal. 20 (1981), 210–227 (Russian). MR 622018
- G. L. Litvinov and V. I. Lomonosov, Density theorems in locally convex spaces and irreducible representations, Dokl. Akad. Nauk SSSR 257 (1981), no. 4, 826–830 (Russian). MR 612576
- Anders Melin and Johannes Sjöstrand, Fourier integral operators with complex-valued phase functions, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) Lecture Notes in Math., Vol. 459, Springer, Berlin, 1975, pp. 120–223. MR 0431289
- Mustapha Raïs, Sur l’irréductibilité de certaines représentations induites non unitaires, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 713–716 (French, with English summary). MR 920049
- François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 2, University Series in Mathematics, Plenum Press, New York-London, 1980. Fourier integral operators. MR 597145
- Ernest Thieleker, On the irreducibility of nonunitary induced representations of certain semidirect products, Trans. Amer. Math. Soc. 164 (1972), 353–369. MR 293017, DOI 10.1090/S0002-9947-1972-0293017-9
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
- Floyd L. Williams, Topological irreducibility of nonunitary representations of group extensions, Trans. Amer. Math. Soc. 233 (1977), 69–84. MR 463364, DOI 10.1090/S0002-9947-1977-0463364-0
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 324 (1991), 543-554
- MSC: Primary 22E45; Secondary 22D30
- DOI: https://doi.org/10.1090/S0002-9947-1991-0974525-3
- MathSciNet review: 974525