## Ultra-irreducibility of induced representations of semidirect products

HTML articles powered by AMS MathViewer

- by Henrik Stetkær PDF
- Trans. Amer. Math. Soc.
**324**(1991), 543-554 Request permission

## Abstract:

Let the Lie group $G$ be a semidirect product, $G = SK$, of a connected, closed, normal subgroup $S$ and a closed subgroup $K$. Let $\Lambda$ be a nonunitary character of $S$, and let ${K_\Lambda }$ be its stability subgroup in $K$. Let ${I^{\Lambda \mu }}$, for any irreducible representation $\mu$ of ${K_\Lambda }$, denote the representation ${I^{\Lambda \mu }}$ of $G$ induced by the representation $\Lambda \mu$ of $S{K_\Lambda }$. The representation spaces are subspaces of the distributions. We show that ${I^{\Lambda \mu }}$ is ultra-irreducible when the corresponding Poisson transform is injective, and find a sufficient condition for this injectivity.## References

- C. Champetier and P. Delorme,
*Sur les représentations des groupes de déplacements de Cartan*, J. Functional Analysis**43**(1981), no. 2, 258–279 (French). MR**633979**, DOI 10.1016/0022-1236(81)90032-X - S. G. Gindikin,
*Unitary representations of groups of automorphisms of Riemannian symmetric spaces of zero curvature*, Funkcional. Anal. i Priložen.**1**(1967), 32–37 (Russian). MR**0209405** - Sigurdur Helgason,
*A duality for symmetric spaces with applications to group representations. III. Tangent space analysis*, Adv. in Math.**36**(1980), no. 3, 297–323. MR**577307**, DOI 10.1016/0001-8708(80)90019-5 - Jacob Jacobsen and Henrich Stetkær,
*Spaces in which Fredholm operators have well defined trace*, J. Operator Theory**19**(1988), no. 2, 381–386. MR**960988** - George Kempf and Linda Ness,
*The length of vectors in representation spaces*, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978) Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, pp. 233–243. MR**555701** - Adam Korányi,
*On the injectivity of the Poisson transform*, J. Functional Analysis**45**(1982), no. 2, 293–296. MR**647077**, DOI 10.1016/0022-1236(82)90024-6 - G. L. Litvinov and V. I. Lomonosov,
*Density theorems in locally convex spaces and their applications*, Trudy Sem. Vektor. Tenzor. Anal.**20**(1981), 210–227 (Russian). MR**622018** - G. L. Litvinov and V. I. Lomonosov,
*Density theorems in locally convex spaces and irreducible representations*, Dokl. Akad. Nauk SSSR**257**(1981), no. 4, 826–830 (Russian). MR**612576** - Anders Melin and Johannes Sjöstrand,
*Fourier integral operators with complex-valued phase functions*, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) Lecture Notes in Math., Vol. 459, Springer, Berlin, 1975, pp. 120–223. MR**0431289** - Mustapha Raïs,
*Sur l’irréductibilité de certaines représentations induites non unitaires*, C. R. Acad. Sci. Paris Sér. I Math.**305**(1987), no. 16, 713–716 (French, with English summary). MR**920049** - François Trèves,
*Introduction to pseudodifferential and Fourier integral operators. Vol. 2*, University Series in Mathematics, Plenum Press, New York-London, 1980. Fourier integral operators. MR**597145** - Ernest Thieleker,
*On the irreducibility of nonunitary induced representations of certain semidirect products*, Trans. Amer. Math. Soc.**164**(1972), 353–369. MR**293017**, DOI 10.1090/S0002-9947-1972-0293017-9 - Garth Warner,
*Harmonic analysis on semi-simple Lie groups. I*, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR**0498999** - Floyd L. Williams,
*Topological irreducibility of nonunitary representations of group extensions*, Trans. Amer. Math. Soc.**233**(1977), 69–84. MR**463364**, DOI 10.1090/S0002-9947-1977-0463364-0

## Additional Information

- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**324**(1991), 543-554 - MSC: Primary 22E45; Secondary 22D30
- DOI: https://doi.org/10.1090/S0002-9947-1991-0974525-3
- MathSciNet review: 974525