Local singularities such that all deformations are tangentially flat
HTML articles powered by AMS MathViewer
- by Bernd Herzog
- Trans. Amer. Math. Soc. 324 (1991), 555-601
- DOI: https://doi.org/10.1090/S0002-9947-1991-0986026-7
- PDF | Request permission
Abstract:
We give a criterion for a local ring $({B_0},{\mathfrak {n}_0})$ containing a field to have only tangentially flat deformations. Various examples of such local rings are constructed.References
- N. Bourbaki, Algèbre commutative, Hermann, Paris, 1961-1965.
- Corrado De Concini, David Eisenbud, and Claudio Procesi, Hodge algebras, Astérisque, vol. 91, Société Mathématique de France, Paris, 1982. With a French summary. MR 680936 A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math., Paris, 1960-1967.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- B. Herzog, Die Wirkung lokaler Homomorphismen auf die Hilbertfunktion, Math. Nachr. 97 (1980), 103–115 (German). MR 600827, DOI 10.1002/mana.19800970110
- B. Herzog, On a relation between the Hilbert functions belonging to a local homomorphism, J. London Math. Soc. (2) 25 (1982), no. 3, 458–466. MR 657502, DOI 10.1112/jlms/s2-25.3.458
- Bernd Herzog, A criterion for tangential flatness, Manuscripta Math. 43 (1983), no. 2-3, 219–228. MR 707045, DOI 10.1007/BF01165831
- J. Herzog, Strict local rings, Proc. Amer. Math. Soc. 84 (1982), no. 2, 165–172. MR 637161, DOI 10.1090/S0002-9939-1982-0637161-4
- Heisuke Hironaka, Certain numerical characters of singularities, J. Math. Kyoto Univ. 10 (1970), 151–187. MR 292831, DOI 10.1215/kjm/1250523817
- Anthony Iarrobino, Compressed algebras: Artin algebras having given socle degrees and maximal length, Trans. Amer. Math. Soc. 285 (1984), no. 1, 337–378. MR 748843, DOI 10.1090/S0002-9947-1984-0748843-4
- Christer Lech, Inequalities related to certain couples of local rings, Acta Math. 112 (1964), 69–89. MR 161876, DOI 10.1007/BF02391765
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- Peter Schenzel, Über die freien Auflösungen extremaler Cohen-Macaulay-Ringe, J. Algebra 64 (1980), no. 1, 93–101 (German). MR 575785, DOI 10.1016/0021-8693(80)90136-2
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 324 (1991), 555-601
- MSC: Primary 14B07; Secondary 13F25, 14M15, 32S05, 32S30
- DOI: https://doi.org/10.1090/S0002-9947-1991-0986026-7
- MathSciNet review: 986026