A cohomological approach to the Brauer-Long group and the groups of Galois extensions and strongly graded rings
Authors:
S. Caenepeel and M. Beattie
Journal:
Trans. Amer. Math. Soc. 324 (1991), 747-775
MSC:
Primary 16H05; Secondary 13A20
DOI:
https://doi.org/10.1090/S0002-9947-1991-0987160-8
MathSciNet review:
987160
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a finite abelian group, and
a commutative ring. The Brauer-Long group
is described by an exact sequence




- [1] M. Artin, On the joins of Hensel rings, Advances in Math. 7 (1971), 282–296 (1971). MR 0289501, https://doi.org/10.1016/S0001-8708(71)80007-5
- [2] Hyman Bass, Clifford algebras and spinor norms over a commutative ring, Amer. J. Math. 96 (1974), 156–206. MR 0360645, https://doi.org/10.2307/2373586
- [3] Margaret Beattie, A direct sum decomposition for the Brauer group of 𝐻-module algebras, J. Algebra 43 (1976), no. 2, 686–693. MR 0441942, https://doi.org/10.1016/0021-8693(76)90134-4
- [4] Margaret Beattie, The Brauer group of central separable 𝐺-Azumaya algebras, J. Algebra 54 (1978), no. 2, 516–525. MR 514083, https://doi.org/10.1016/0021-8693(78)90014-5
- [5] Margaret Beattie, Automorphisms of 𝐺-Azumaya algebras, Canad. J. Math. 37 (1985), no. 6, 1047–1058. MR 828833, https://doi.org/10.4153/CJM-1985-056-7
- [6] Margaret Beattie, Computing the Brauer group of graded Azumaya algebras from its subgroups, J. Algebra 101 (1986), no. 2, 339–349. MR 847164, https://doi.org/10.1016/0021-8693(86)90198-5
- [7] M. Beattie and S. Caenepeel, The Brauer-Long group of 𝑍/𝑝^{𝑡}𝑍-dimodule algebras, J. Pure Appl. Algebra 60 (1989), no. 3, 219–236. MR 1021847, https://doi.org/10.1016/0022-4049(89)90083-2
- [8] Stefaan Caenepeel, A cohomological interpretation of the Brauer-Wall group, Algebra and geometry (Santiago de Compostela, 1989) Álxebra, vol. 54, Univ. Santiago de Compostela, Santiago de Compostela, 1990, pp. 31–46. MR 1061160
- [9] Stefaan Caenepeel and Freddy Van Oystaeyen, Brauer groups and the cohomology of graded rings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 121, Marcel Dekker, Inc., New York, 1988. MR 972258
- [10] S. U. Chase and Alex Rosenberg, Amitsur cohomology and the Brauer group, Mem. Amer. Math. Soc. No. 52 (1965), 34–79. MR 0195923
- [11] Stephen U. Chase and Moss E. Sweedler, Hopf algebras and Galois theory, Lecture Notes in Mathematics, Vol. 97, Springer-Verlag, Berlin-New York, 1969. MR 0260724
- [12] Lindsay N. Childs, The Brauer group of graded Azumaya algebras. II. Graded Galois extensions, Trans. Amer. Math. Soc. 204 (1975), 137–160. MR 0364216, https://doi.org/10.1090/S0002-9947-1975-0364216-5
- [13] L. N. Childs, G. Garfinkel, and M. Orzech, The Brauer group of graded Azumaya algebras, Trans. Amer. Math. Soc. 175 (1973), 299–326. MR 0349652, https://doi.org/10.1090/S0002-9947-1973-0349652-3
- [14] A. P. Deegan, A subgroup of the generalised Brauer group of Γ-Azumaya algebras, J. London Math. Soc. (2) 23 (1981), no. 2, 223–240. MR 609102, https://doi.org/10.1112/jlms/s2-23.2.223
- [15] F. R. DeMeyer, Galois theory in separable algebras over commutative rings, Illinois J. Math. 10 (1966), 287–295. MR 0191922
- [16] F. R. DeMeyer and T. J. Ford, Computing the Brauer-Long group of 𝑍/2 dimodule algebras, J. Pure Appl. Algebra 54 (1988), no. 2-3, 197–208. MR 963544, https://doi.org/10.1016/0022-4049(88)90030-8
- [17] Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479
- [18] Ofer Gabber, Some theorems on Azumaya algebras, The Brauer group (Sem., Les Plans-sur-Bex, 1980) Lecture Notes in Math., vol. 844, Springer, Berlin-New York, 1981, pp. 129–209. MR 611868
- [19] D. K. Harrison, Abelian extensions of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965), 1–14. MR 0195921
- [20] Max-A. Knus, Algebras graded by a group, Category Theory, Homology Theory and their Applications, II (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Two), Springer, Berlin, 1969, pp. 117–133. MR 0242895
- [21] -, A Teichmüller cocycle for finite extensions (preprint).
- [22] Max-Albert Knus and Manuel Ojanguren, Théorie de la descente et algèbres d’Azumaya, Lecture Notes in Mathematics, Vol. 389, Springer-Verlag, Berlin-New York, 1974 (French). MR 0417149
- [23] F. W. Long, A generalization of the Brauer group of graded algebras, Proc. London Math. Soc. (3) 29 (1974), 237–256. MR 0354753, https://doi.org/10.1112/plms/s3-29.2.237
- [24] F. W. Long, The Brauer group of dimodule algebras, J. Algebra 30 (1974), 559–601. MR 0357473, https://doi.org/10.1016/0021-8693(74)90224-5
- [25] F. W. Long, Generalized Clifford algebras and dimodule algebras, J. London Math. Soc. (2) 13 (1976), no. 3, 438–442. MR 0409528, https://doi.org/10.1112/jlms/s2-13.3.438
- [26] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- [27] C. Năstăsescu and F. van Oystaeyen, Graded ring theory, North-Holland Mathematical Library, vol. 28, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 676974
- [28] Morris Orzech, On the Brauer group of algebras having a grading and an action, Canad. J. Math. 28 (1976), no. 3, 533–552. MR 0404313, https://doi.org/10.4153/CJM-1976-053-6
- [29] Morris Orzech, Correction to: “On the Brauer group of algebras having a grading and an action” [Canad. J. Math. 28 (1976), no. 3, 533–552; MR 53 #8115], Canad. J. Math. 32 (1980), no. 6, 1523–1524. MR 604706, https://doi.org/10.4153/CJM-1980-121-3
- [30] Alex Rosenberg and Daniel Zelinsky, Automorphisms of separable algebras, Pacific J. Math. 11 (1961), 1109–1117. MR 0148709
- [31] Charles Small, The Brauer-Wall group of a commutative ring, Trans. Amer. Math. Soc. 156 (1971), 455–491. MR 0276218, https://doi.org/10.1090/S0002-9947-1971-0276218-4
- [32]
F. Tilborghs, The Brauer group of
-algebras which have compatible
-action and
grading, Comm. Algebra (to appear).
- [33]
-, The Brauer-Long group of a field
and the cyclic group
(preprint).
- [34] -, Brauer groups of algebras with gradings and actions, Thesis, Free University of Brussels, 1989.
- [35] F. Tilborghs and F. Van Oystaeyen, Brauer-Wall algebras graded by 𝑍₂×𝑍, Comm. Algebra 16 (1988), no. 7, 1457–1478. MR 941180
- [36] O. E. Villamayor and D. Zelinsky, Brauer groups and Amitsur cohomology for general commutative ring extensions, J. Pure Appl. Algebra 10 (1977/78), no. 1, 19–55. MR 0460308, https://doi.org/10.1016/0022-4049(77)90027-5
- [37] C. T. C. Wall, Graded Brauer groups, J. Reine Angew. Math. 213 (1963/1964), 187–199. MR 0167498, https://doi.org/10.1515/crll.1964.213.187
Retrieve articles in Transactions of the American Mathematical Society with MSC: 16H05, 13A20
Retrieve articles in all journals with MSC: 16H05, 13A20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1991-0987160-8
Keywords:
Brauer group,
Azumaya algebra,
Galois extension,
étale cohomology,
strongly graded ring,
dimodule algebra
Article copyright:
© Copyright 1991
American Mathematical Society