A cohomological approach to the Brauer-Long group and the groups of Galois extensions and strongly graded rings
HTML articles powered by AMS MathViewer
- by S. Caenepeel and M. Beattie PDF
- Trans. Amer. Math. Soc. 324 (1991), 747-775 Request permission
Abstract:
Let $G$ be a finite abelian group, and $R$ a commutative ring. The Brauer-Long group $\operatorname {BD} (R,G)$ is described by an exact sequence \[ 1 \to {\operatorname {BD} ^s}(R,G) \to \operatorname {BD} (R,G)\xrightarrow {\beta }\operatorname {Aut} (G \times {G^{\ast }})(R)\] where ${\operatorname {BD} ^s}(R,G)$ is a product of étale cohomology groups, and Im $\beta$ is a kind of orthogonal subgroup of $\operatorname {Aut} (G \times {G^{\ast }})(R)$. This sequence generalizes some other well-known exact sequences, and restricts to two split exact sequences describing Galois extensions and strongly graded rings.References
- M. Artin, On the joins of Hensel rings, Advances in Math. 7 (1971), 282–296 (1971). MR 289501, DOI 10.1016/S0001-8708(71)80007-5
- Hyman Bass, Clifford algebras and spinor norms over a commutative ring, Amer. J. Math. 96 (1974), 156–206. MR 360645, DOI 10.2307/2373586
- Margaret Beattie, A direct sum decomposition for the Brauer group of $H$-module algebras, J. Algebra 43 (1976), no. 2, 686–693. MR 441942, DOI 10.1016/0021-8693(76)90134-4
- Margaret Beattie, The Brauer group of central separable $G$-Azumaya algebras, J. Algebra 54 (1978), no. 2, 516–525. MR 514083, DOI 10.1016/0021-8693(78)90014-5
- Margaret Beattie, Automorphisms of $G$-Azumaya algebras, Canad. J. Math. 37 (1985), no. 6, 1047–1058. MR 828833, DOI 10.4153/CJM-1985-056-7
- Margaret Beattie, Computing the Brauer group of graded Azumaya algebras from its subgroups, J. Algebra 101 (1986), no. 2, 339–349. MR 847164, DOI 10.1016/0021-8693(86)90198-5
- M. Beattie and S. Caenepeel, The Brauer-Long group of $\textbf {Z}/p^t\textbf {Z}$-dimodule algebras, J. Pure Appl. Algebra 60 (1989), no. 3, 219–236. MR 1021847, DOI 10.1016/0022-4049(89)90083-2
- Stefaan Caenepeel, A cohomological interpretation of the Brauer-Wall group, Algebra and geometry (Santiago de Compostela, 1989) Álxebra, vol. 54, Univ. Santiago de Compostela, Santiago de Compostela, 1990, pp. 31–46. MR 1061160
- Stefaan Caenepeel and Freddy Van Oystaeyen, Brauer groups and the cohomology of graded rings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 121, Marcel Dekker, Inc., New York, 1988. MR 972258
- S. U. Chase and Alex Rosenberg, Amitsur cohomology and the Brauer group, Mem. Amer. Math. Soc. 52 (1965), 34–79. MR 195923
- Stephen U. Chase and Moss E. Sweedler, Hopf algebras and Galois theory, Lecture Notes in Mathematics, Vol. 97, Springer-Verlag, Berlin-New York, 1969. MR 0260724
- Lindsay N. Childs, The Brauer group of graded Azumaya algebras. II. Graded Galois extensions, Trans. Amer. Math. Soc. 204 (1975), 137–160. MR 364216, DOI 10.1090/S0002-9947-1975-0364216-5
- L. N. Childs, G. Garfinkel, and M. Orzech, The Brauer group of graded Azumaya algebras, Trans. Amer. Math. Soc. 175 (1973), 299–326. MR 349652, DOI 10.1090/S0002-9947-1973-0349652-3
- A. P. Deegan, A subgroup of the generalised Brauer group of $\Gamma$-Azumaya algebras, J. London Math. Soc. (2) 23 (1981), no. 2, 223–240. MR 609102, DOI 10.1112/jlms/s2-23.2.223
- F. R. DeMeyer, Galois theory in separable algebras over commutative rings, Illinois J. Math. 10 (1966), 287–295. MR 191922
- F. R. DeMeyer and T. J. Ford, Computing the Brauer-Long group of $\textbf {Z}/2$ dimodule algebras, J. Pure Appl. Algebra 54 (1988), no. 2-3, 197–208. MR 963544, DOI 10.1016/0022-4049(88)90030-8
- Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479
- Ofer Gabber, Some theorems on Azumaya algebras, The Brauer group (Sem., Les Plans-sur-Bex, 1980) Lecture Notes in Math., vol. 844, Springer, Berlin-New York, 1981, pp. 129–209. MR 611868
- D. K. Harrison, Abelian extensions of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 1–14. MR 195921
- Max-A. Knus, Algebras graded by a group, Category Theory, Homology Theory and their Applications, II (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Two), Springer, Berlin, 1969, pp. 117–133. MR 0242895 —, A Teichmüller cocycle for finite extensions (preprint).
- Max-Albert Knus and Manuel Ojanguren, Théorie de la descente et algèbres d’Azumaya, Lecture Notes in Mathematics, Vol. 389, Springer-Verlag, Berlin-New York, 1974 (French). MR 0417149
- F. W. Long, A generalization of the Brauer group of graded algebras, Proc. London Math. Soc. (3) 29 (1974), 237–256. MR 354753, DOI 10.1112/plms/s3-29.2.237
- F. W. Long, The Brauer group of dimodule algebras, J. Algebra 30 (1974), 559–601. MR 357473, DOI 10.1016/0021-8693(74)90224-5
- F. W. Long, Generalized Clifford algebras and dimodule algebras, J. London Math. Soc. (2) 13 (1976), no. 3, 438–442. MR 409528, DOI 10.1112/jlms/s2-13.3.438
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- C. Năstăsescu and F. van Oystaeyen, Graded ring theory, North-Holland Mathematical Library, vol. 28, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 676974
- Morris Orzech, On the Brauer group of algebras having a grading and an action, Canadian J. Math. 28 (1976), no. 3, 533–552. MR 404313, DOI 10.4153/CJM-1976-053-6
- Morris Orzech, Correction to: “On the Brauer group of algebras having a grading and an action” [Canad. J. Math. 28 (1976), no. 3, 533–552; MR 53 #8115], Canadian J. Math. 32 (1980), no. 6, 1523–1524. MR 604706, DOI 10.4153/CJM-1980-121-3
- Alex Rosenberg and Daniel Zelinsky, Automorphisms of separable algebras, Pacific J. Math. 11 (1961), 1109–1117. MR 148709
- Charles Small, The Brauer-Wall group of a commutative ring, Trans. Amer. Math. Soc. 156 (1971), 455–491. MR 276218, DOI 10.1090/S0002-9947-1971-0276218-4 F. Tilborghs, The Brauer group of $R$-algebras which have compatible $G$-action and ${\mathbf {Z}} \times G$grading, Comm. Algebra (to appear). —, The Brauer-Long group of a field $R$ and the cyclic group ${C_p}$ (preprint). —, Brauer groups of algebras with gradings and actions, Thesis, Free University of Brussels, 1989.
- F. Tilborghs and F. Van Oystaeyen, Brauer-Wall algebras graded by $Z_2\times \textbf {Z}$, Comm. Algebra 16 (1988), no. 7, 1457–1478. MR 941180
- O. E. Villamayor and D. Zelinsky, Brauer groups and Amitsur cohomology for general commutative ring extensions, J. Pure Appl. Algebra 10 (1977/78), no. 1, 19–55. MR 460308, DOI 10.1016/0022-4049(77)90027-5
- C. T. C. Wall, Graded Brauer groups, J. Reine Angew. Math. 213 (1963/64), 187–199. MR 167498, DOI 10.1515/crll.1964.213.187
Additional Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 324 (1991), 747-775
- MSC: Primary 16H05; Secondary 13A20
- DOI: https://doi.org/10.1090/S0002-9947-1991-0987160-8
- MathSciNet review: 987160