Construction of units in integral group rings of finite nilpotent groups
HTML articles powered by AMS MathViewer
- by Jürgen Ritter and Sudarshan K. Sehgal
- Trans. Amer. Math. Soc. 324 (1991), 603-621
- DOI: https://doi.org/10.1090/S0002-9947-1991-0987166-9
- PDF | Request permission
Abstract:
Let $U$ be the group of units of the integral group ring of a finite group $G$. We give a set of generators of a subgroup $B$ of $U$. This subgroup is of finite index in $U$ if $G$ is an odd nilpotent group. We also give an example of a $2$-group such that $B$ is of infinite index in $U$.References
- Anthony Bak, Subgroups of the general linear group normalized by relative elementary groups, Algebraic $K$-theory, Part II (Oberwolfach, 1980) Lecture Notes in Math., vol. 967, Springer, Berlin-New York, 1982, pp. 1–22. MR 689387
- Hyman Bass, The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups, Topology 4 (1965), 391–410. MR 193120, DOI 10.1016/0040-9383(66)90036-X
- H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for $\textrm {SL}_{n}\,(n\geq 3)$ and $\textrm {Sp}_{2n}\,(n\geq 2)$, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59–137. MR 244257
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979 G. Frobenius and I. Schur, Über die reellen Darstellungen der endlichen Gruppen, Sitz. Ber. Preuss. Akad. Wiss. (1906), 209-217.
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
- Bernhard Liehl, On the group $\textrm {SL}_{2}$ over orders of arithmetic type, J. Reine Angew. Math. 323 (1981), 153–171. MR 611449, DOI 10.1515/crll.1981.323.153
- Morris Newman, Integral matrices, Pure and Applied Mathematics, Vol. 45, Academic Press, New York-London, 1972. MR 0340283
- Jürgen Ritter and Sudarshan K. Sehgal, Certain normal subgroups of units in group rings, J. Reine Angew. Math. 381 (1987), 214–220. MR 918851 —, Generators of subgroups of $U(\mathbb {Z}G)$; preprint (submitted to Contemp. Math.).
- Klaus Roggenkamp and Leonard Scott, Isomorphisms of $p$-adic group rings, Ann. of Math. (2) 126 (1987), no. 3, 593–647. MR 916720, DOI 10.2307/1971362
- Peter Roquette, Realisierung von Darstellungen endlicher nilpotenter Gruppen, Arch. Math. (Basel) 9 (1958), 241–250 (German). MR 97452, DOI 10.1007/BF01900587
- Jean-Pierre Serre, Le problème des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970), 489–527 (French). MR 272790, DOI 10.2307/1970630 L. N. Vaserstein, On the group $S{L_2}$ over Dedekind rings of arithmetic type, Math. USSR-Sb. 18 (1973), 321-332. —, The structure of classic arithmetic groups of rank greater than one, Math. USSR-Sb. 20 (1973), 465-492.
- Alfred Weiss, Rigidity of $p$-adic $p$-torsion, Ann. of Math. (2) 127 (1988), no. 2, 317–332. MR 932300, DOI 10.2307/2007056
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 324 (1991), 603-621
- MSC: Primary 20C05; Secondary 16S34, 16U60
- DOI: https://doi.org/10.1090/S0002-9947-1991-0987166-9
- MathSciNet review: 987166