The existence of generalized isothermal coordinates for higher-dimensional Riemannian manifolds
Author:
Jian Guo Cao
Journal:
Trans. Amer. Math. Soc. 324 (1991), 901-920
MSC:
Primary 53B20; Secondary 53A30
DOI:
https://doi.org/10.1090/S0002-9947-1991-0991959-1
MathSciNet review:
991959
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We shall show that, for any given point on a Riemannian manifold
, there is a pointwise conformal metric
in which the
-geodesic sphere centered at
with radius
has constant mean curvature
for all sufficiently small
. Furthermore, the exponential map of
at
is a measure preserving map in a small ball around
.
- [A] Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859
- [BE] Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684
- [BGE] Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313
- [CHS] Luis Caffarelli, Robert Hardt, and Leon Simon, Minimal surfaces with isolated singularities, Manuscripta Math. 48 (1984), no. 1-3, 1–18. MR 753722, https://doi.org/10.1007/BF01168999
- [D] Dennis M. DeTurck, Existence of metrics with prescribed Ricci curvature: local theory, Invent. Math. 65 (1981/82), no. 1, 179–207. MR 636886, https://doi.org/10.1007/BF01389010
- [DK] Dennis M. DeTurck and Jerry L. Kazdan, Some regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 3, 249–260. MR 644518
- [EH] Jost Eschenburg and Ernst Heintze, An elementary proof of the Cheeger-Gromoll splitting theorem, Ann. Global Anal. Geom. 2 (1984), no. 2, 141–151. MR 777905, https://doi.org/10.1007/BF01876506
- [GT] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
- [GG] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag, New York-Heidelberg, 1973. Graduate Texts in Mathematics, Vol. 14. MR 0341518
- [GV] A. Gray and L. Vanhecke, Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), no. 3-4, 157–198. MR 521460, https://doi.org/10.1007/BF02395060
- [LP] John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37–91. MR 888880, https://doi.org/10.1090/S0273-0979-1987-15514-5
- [M] J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. MR 0163331
Retrieve articles in Transactions of the American Mathematical Society with MSC: 53B20, 53A30
Retrieve articles in all journals with MSC: 53B20, 53A30
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1991-0991959-1
Article copyright:
© Copyright 1991
American Mathematical Society