The Selberg trace formula. VIII. Contribution from the continuous spectrum
HTML articles powered by AMS MathViewer
- by M. Scott Osborne and Garth Warner
- Trans. Amer. Math. Soc. 324 (1991), 623-653
- DOI: https://doi.org/10.1090/S0002-9947-1991-1028763-4
- PDF | Request permission
Abstract:
The purpose of this paper is to isolate the contribution from the continuous spectrum to the Selberg trace formula.References
- James Arthur, The characters of discrete series as orbital integrals, Invent. Math. 32 (1976), no. 3, 205–261. MR 412348, DOI 10.1007/BF01425569
- James Arthur, The trace formula in invariant form, Ann. of Math. (2) 114 (1981), no. 1, 1–74. MR 625344, DOI 10.2307/1971376
- James Arthur, On a family of distributions obtained from Eisenstein series. I. Application of the Paley-Wiener theorem, Amer. J. Math. 104 (1982), no. 6, 1243–1288. MR 681737, DOI 10.2307/2374061
- James Arthur, On a family of distributions obtained from Eisenstein series. II. Explicit formulas, Amer. J. Math. 104 (1982), no. 6, 1289–1336. MR 681738, DOI 10.2307/2374062
- M. Scott Osborne and Garth Warner, The Selberg trace formula. I. $\Gamma$-rank one lattices, J. Reine Angew. Math. 324 (1981), 1–113. MR 614517, DOI 10.1515/crll.1981.324.1
- M. Scott Osborne and Garth Warner, The Selberg trace formula. II. Partition, reduction, truncation, Pacific J. Math. 106 (1983), no. 2, 307–496. MR 699915 —, The Selberg trace formula. III, Mem. Amer. Math. Soc. No. 283 (1983), 1-209. —, The Selberg trace formula. IV, Lecture Notes in Math., vol. 1024, Springer, 1983, pp. 112-263.
- M. Scott Osborne and Garth Warner, The Selberg trace formula. V. Questions of trace class, Trans. Amer. Math. Soc. 286 (1984), no. 1, 351–376. MR 756044, DOI 10.1090/S0002-9947-1984-0756044-9
- M. Scott Osborne and Garth Warner, The Selberg trace formula. VI. Implications of estimability, Amer. J. Math. 107 (1985), no. 6, 1369–1437 (1986). MR 815766, DOI 10.2307/2374410
- M. Scott Osborne and Garth Warner, The Selberg trace formula. VII. Application of the truncation process to the continuous spectrum, Pacific J. Math. 140 (1989), no. 2, 263–352. MR 1023790 P. Ringseth, Invariant Eisenstein systems, Ph. D. Thesis, University of Washington, 1986.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 324 (1991), 623-653
- MSC: Primary 11F72; Secondary 22E45
- DOI: https://doi.org/10.1090/S0002-9947-1991-1028763-4
- MathSciNet review: 1028763