Commutation methods applied to the mKdV-equation
Authors:
F. Gesztesy, W. Schweiger and B. Simon
Journal:
Trans. Amer. Math. Soc. 324 (1991), 465-525
MSC:
Primary 35Q53; Secondary 34L25, 47E05, 58F07
DOI:
https://doi.org/10.1090/S0002-9947-1991-1029000-7
MathSciNet review:
1029000
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: An explicit construction of solutions of the modified Korteweg-de Vries equation given a solution of the (ordinary) Korteweg-de Vries equation is provided. Our theory is based on commutation methods (i.e., supersymmetry) underlying Miura's transformation that links solutions of the two evolution equations.
- [1] Mark J. Ablowitz and Henri Cornille, On solutions of the Korteweg-de Vries equation, Phys. Lett. A 72 (1979), no. 4-5, 277–280. MR 589815, https://doi.org/10.1016/0375-9601(79)90467-5
- [2] M. J. Ablowitz and J. Satsuma, Solitons and rational solutions of nonlinear evolution equations, J. Math. Phys. 19 (1978), no. 10, 2180–2186. MR 507515, https://doi.org/10.1063/1.523550
- [3] Mark J. Ablowitz, Martin Kruskal, and Harvey Segur, A note on Miura’s transformation, J. Math. Phys. 20 (1979), no. 6, 999–1003. MR 534337, https://doi.org/10.1063/1.524197
- [4] Mark J. Ablowitz, David J. Kaup, Alan C. Newell, and Harvey Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Appl. Math. 53 (1974), no. 4, 249–315. MR 450815, https://doi.org/10.1137/1015113
- [5] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, 1972.
- [6] M. Adler and J. Moser, On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys. 61 (1978), no. 1, 1–30. MR 501106
- [7] Marek Antonowicz and Allan P. Fordy, Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems, Comm. Math. Phys. 124 (1989), no. 3, 465–486. MR 1012634
- [8] Asao Arai, Some remarks on scattering theory in supersymmetric quantum systems, J. Math. Phys. 28 (1987), no. 2, 472–476. MR 872031, https://doi.org/10.1063/1.527629
- [9]
V. A. Arkad'ev, A. K. Pogrebkov, and M. K. Polivanov, Singular solutions of the
equation and the inverse scattering method, J. Soviet Math. 31 (1985), 3264-3279.
- [10] T. C. Au-Yeung, C. Au, and P. C. W. Fung, One-soliton Korteweg-de Vries solutions with nonzero vacuum parameters obtainable from the generalized inverse scattering method, Phys. Rev. A (3) 29 (1984), no. 5, 2370–2374. MR 743862, https://doi.org/10.1103/PhysRevA.29.2370
- [11] T. C. Au-Yeung, P. C. W. Fung, and C. Au, Modified KdV solitons with nonzero vacuum parameter obtainable from the ZS-AKNS inverse method, J. Phys. A 17 (1984), no. 7, 1425–1436. MR 748775
- [12] Richard Beals, Percy Deift, and Carlos Tomei, Direct and inverse scattering on the line, Mathematical Surveys and Monographs, vol. 28, American Mathematical Society, Providence, RI, 1988. MR 954382
- [13] M. J. Bergvelt and A. P. E. ten Kroode, 𝜏 functions and zero curvature equations of Toda-AKNS type, J. Math. Phys. 29 (1988), no. 6, 1308–1320. MR 944444, https://doi.org/10.1063/1.527923
- [14] D. Bollé, F. Gesztesy, and M. Klaus, Scattering theory for one-dimensional systems with ∫𝑑𝑥𝑉(𝑥)=0, J. Math. Anal. Appl. 122 (1987), no. 2, 496–518. MR 877834, https://doi.org/10.1016/0022-247X(87)90281-2
- [15] D. Bollé, F. Gesztesy, and S. F. J. Wilk, A complete treatment of low-energy scattering in one dimension, J. Operator Theory 13 (1985), no. 1, 3–31. MR 768299
- [16] D. Bollé, F. Gesztesy, H. Grosse, W. Schweiger, and B. Simon, Witten index, axial anomaly, and Kreĭn’s spectral shift function in supersymmetric quantum mechanics, J. Math. Phys. 28 (1987), no. 7, 1512–1525. MR 894842, https://doi.org/10.1063/1.527508
- [17] N. V. Borisov, W. Müller, and R. Schrader, Relative index theorems and supersymmetric scattering theory, Comm. Math. Phys. 114 (1988), no. 3, 475–513. MR 929141
- [18] M. Bruschi and F. Calogero, The Lax representation for an integrable class of relativistic dynamical systems, Comm. Math. Phys. 109 (1987), no. 3, 481–492. MR 882811
- [19] J. L. Burchnall and T. W. Chaundy, Commutative ordinary differential operators, Proc. Roy. Soc. London Ser. A 118 (1928), 557-583.
- [20]
-, Commutative ordinary differential operators II. The identity
, Proc. Roy. Soc. London Ser. A 134 (1931-32), 471-485.
- [21] Mutiara Buys and Allan Finkel, The inverse periodic problem for Hill’s equation with a finite-gap potential, J. Differential Equations 55 (1984), no. 2, 257–275. MR 764126, https://doi.org/10.1016/0022-0396(84)90083-4
- [22] F. Calogero and A. Degasperis, Reduction technique for matrix nonlinear evolution equations solvable by the spectral transform, J. Math. Phys. 22 (1981), no. 1, 23–31. MR 604446, https://doi.org/10.1063/1.524750
- [23] René Carmona, One-dimensional Schrödinger operators with random or deterministic potentials: new spectral types, J. Funct. Anal. 51 (1983), no. 2, 229–258. MR 701057, https://doi.org/10.1016/0022-1236(83)90027-7
- [24] S. Chaturvedi and K. Raghunathan, Relation between the Gel′fand-Levitan procedure and the method of supersymmetric partners, J. Phys. A 19 (1986), no. 13, L775–L778. MR 857041
- [25] Amy Cohen, Decay and regularity in the inverse scattering problem, J. Math. Anal. Appl. 87 (1982), no. 2, 395–426. MR 658022, https://doi.org/10.1016/0022-247X(82)90132-9
- [26] Amy Cohen, Solutions of the Korteweg-de Vries equation with steplike initial profile, Comm. Partial Differential Equations 9 (1984), no. 8, 751–806. MR 748367, https://doi.org/10.1080/03605308408820347
- [27] Amy Cohen and Thomas Kappeler, Scattering and inverse scattering for steplike potentials in the Schrödinger equation, Indiana Univ. Math. J. 34 (1985), no. 1, 127–180. MR 773398, https://doi.org/10.1512/iumj.1985.34.34008
- [28] M. M. Crum, Associated Sturm-Liouville systems, Quart. J. Math. Oxford Ser. (2) 6 (1955), 121–127. MR 72332, https://doi.org/10.1093/qmath/6.1.121
- [29] G. Darboux, Sur une proposition relative aux équations linéaires, C.R. Acad. Sci. (Paris) 94 (1882), 1456-1459.
- [30] Etsur\B{o} Date and Shunichi Tanaka, Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice, Progr. Theoret. Phys. Suppl. 59 (1976), 107–125. MR 0438389, https://doi.org/10.1143/PTPS.59.107
- [31] E. B. Davies and B. Simon, Scattering theory for systems with different spatial asymptotics on the left and right, Comm. Math. Phys. 63 (1978), no. 3, 277–301. MR 513906
- [32] P. A. Deift, Applications of a commutation formula, Duke Math. J. 45 (1978), no. 2, 267–310. MR 495676
- [33] P. Deift and E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979), no. 2, 121–251. MR 512420, https://doi.org/10.1002/cpa.3160320202
- [34] Roger K. Dodd, J. Chris Eilbeck, John D. Gibbon, and Hedley C. Morris, Solitons and nonlinear wave equations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982. MR 696935
- [35] B. A. Dubrovin, The inverse scattering problem for periodic short-range potentials, Funkcional. Anal. i Priložen. 9 (1975), no. 1, 65–66 (Russian). MR 0382873
- [36] B. A. Dubrovin and S. P. Novikov, Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation, Ž. Èksper. Teoret. Fiz. 67 (1974), no. 6, 2131–2144 (Russian, with English summary); English transl., Soviet Physics JETP 40 (1974), no. 6, 1058–1063. MR 0382877
- [37] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers John Wiley & Sons New York-London, 1963. MR 0188745
- [38] M. S. P. Eastham, The spectral theory of periodic differential equations, Scottish Academic Press, Edinburgh, 1973.
- [39] Wiktor Eckhaus and Aart van Harten, The inverse scattering transformation and the theory of solitons, North-Holland Mathematics Studies, vol. 50, North-Holland Publishing Co., Amsterdam-New York, 1981. An introduction. MR 615557
- [40] H. Flaschka, On the inverse problem for Hill’s operator, Arch. Rational Mech. Anal. 59 (1975), no. 4, 293–309. MR 387711, https://doi.org/10.1007/BF00250422
- [41] Hermann Flaschka and David W. McLaughlin, Some comments on Bäcklund transformations, canonical transformations and the inverse scattering method, Bäcklund transformations, the inverse scattering method, solitons, and their applications (Workshop Contact Transformations, Vanderbilt Univ., Nashville, Tenn., 1974) Springer, Berlin, 1976, pp. 253–295. Lecture Notes in Math., Vol. 515. MR 0609534
- [42] Hermann Flaschka and Alan C. Newell, Monodromy- and spectrum-preserving deformations. I, Comm. Math. Phys. 76 (1980), no. 1, 65–116. MR 588248
- [43] N. E. Firsova, Riemann surface of quasimomentum and scattering theory for the perturbed Hill operator, J. Soviet Math. 11 (1975), 487-497.
- [44] -, An inverse scattering problem for a perturbed Hill operator, Math. Notes 18 (1975), 1085-1091.
- [45] -, Some spectral identities for the one-dimensional Hill operator, Theoret. Math. Phys. 37 (1977), 1022-1027.
- [46] N. E. Firsova, The direct and inverse scattering problems for the one-dimensional perturbed Hill operator, Math. USSR Sb. 58 (1987), 351-388.
- [47] P. C. W. Fung and C. Au, Bridge between the solutions and vacuum states of the Korteweg-de Vries equation and that of the nonlinear equation 𝑦_{𝑡}+𝑦ₓₓₓ-6𝑦²𝑦ₓ+6𝜆𝑦ₓ=0, Phys. Rev. B (3) 26 (1982), no. 8, 4035–4038. MR 675935
- [48] Clifford S. Gardner, John M. Greene, Martin D. Kruskal, and Robert M. Miura, Korteweg-deVries equation and generalization. VI. Methods for exact solution, Comm. Pure Appl. Math. 27 (1974), 97–133. MR 336122, https://doi.org/10.1002/cpa.3160270108
- [49] F. Gesztesy, Scattering theory for one-dimensional systems with nontrivial spatial asymptotics, Schrödinger operators, Aarhus 1985, Lecture Notes in Math., vol. 1218, Springer, Berlin, 1986, pp. 93–122. MR 869597, https://doi.org/10.1007/BFb0073045
- [50]
F. Gesztesy and B. Simon, Constructing solutions of the
-equation, J. Funct. Anal, (in print).
- [51] J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation, SIAM J. Math. Anal. 20 (1989), no. 6, 1388–1425. MR 1019307, https://doi.org/10.1137/0520091
- [52] Wallace Goldberg and Harry Hochstadt, On a Hill’s equation with selected gaps in its spectrum, J. Differential Equations 34 (1979), no. 2, 167–178. MR 550038, https://doi.org/10.1016/0022-0396(79)90002-0
- [53]
D. Grecu and V. Cionga, On the mixed soliton-rational solutions of the
equation, preprint, 1986.
- [54] H. Grosse, Solitons of the modified KdV equation, Lett. Math. Phys. 8 (1984), no. 4, 313–319. MR 759630, https://doi.org/10.1007/BF00400502
- [55] H. Grosse, New solitons connected to the Dirac equation, Phys. Rep. 134 (1986), no. 5-6, 297–304. MR 832137, https://doi.org/10.1016/0370-1573(86)90053-0
- [56] Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- [57] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 18 (1971), 1192-1194.
- [58] -, Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons, J. Phys. Soc. Japan 33 (1972), 1456-1458.
- [59] Harry Hochstadt, On the determination of a Hill’s equation from its spectrum, Arch. Rational Mech. Anal. 19 (1965), 353–362. MR 181792, https://doi.org/10.1007/BF00253484
- [60] A. R. Its, Inversion of hyperelliptic integrals, and integration of nonlinear differential equations, Vestnik Leningrad. Univ. 7 Mat. Meh. Astronom. vyp. 2 (1976), 39–46, 162 (Russian, with English summary). MR 0609747
- [61] A. R. Its and V. B. Matveev, Schrödinger operators with the finite-band spectrum and the 𝑁-soliton solutions of the Korteweg-de Vries equation, Teoret. Mat. Fiz. 23 (1975), no. 1, 51–68 (Russian, with English summary). MR 479120
- [62] Katsunori Iwasaki, Inverse problem for Sturm-Liouville and Hill equations, Ann. Mat. Pura Appl. (4) 149 (1987), 185–206. MR 932784, https://doi.org/10.1007/BF01773933
- [63] C. G. J. Jacobi, Zur Theorie der Variationsrechnung und der Differentialgleichungen, J. Reine Angew. Math. 17 (1837), 68-82.
- [64] Arthur Jaffe, Andrzej Lesniewski, and Maciej Lewenstein, Ground state structure in supersymmetric quantum mechanics, Ann. Physics 178 (1987), no. 2, 313–329. MR 914181, https://doi.org/10.1016/0003-4916(87)90018-2
- [65] M. Jaulent and I. Miodek, Connection between Zakharov-Shabat and Schrödinger-type inverse scattering transform, Lett. Nuovo Cimento 20 (1977), 655-660.
- [66] Yoshinori Kametaka, Korteweg-de Vries equation. III. Global existence of asymptotically periodic solutions, Proc. Japan Acad. 45 (1969), 656–660. MR 262706
- [67] Yoshinori Kametaka, Korteweg-de Vries equation. IV. Simplest generalization, Proc. Japan Acad. 45 (1969), 661–665. MR 262707
- [68] T. Kato, On the Korteweg-de Vries equation, Manuscripta Math. 28 (1979), 89-99.
- [69] Tosio Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud., vol. 8, Academic Press, New York, 1983, pp. 93–128. MR 759907
- [70] Yusuke Kato, Fredholm determinants and the Cauchy problem of a class of nonlinear evolution equations, Progr. Theoret. Phys. 78 (1987), no. 2, 198–213. MR 919541, https://doi.org/10.1143/PTP.78.198
- [71] J. Kay and H. E. Moses, Reflectionless transmission through dielectrics and scattering potentials, J. Appl. Phys. 27 (1956), 1503-1508.
- [72] Martin Klaus, Low-energy behaviour of the scattering matrix for the Schrödinger equation on the line, Inverse Problems 4 (1988), no. 2, 505–512. MR 954906
- [73] I. M. Krichever, Potentials with zero coefficient of reflection on a background of finite-zone potentials, Functional Anal. Appl. 9 (1975), 161-163.
- [74] S. N. Kruzhkov and A. V. Faminskiĭ, Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation, Mat. Sb. (N.S.) 120(162) (1983), no. 3, 396–425 (Russian). MR 691986
- [75] B. A. Kupershmidt and George Wilson, Modifying Lax equations and the second Hamiltonian structure, Invent. Math. 62 (1981), no. 3, 403–436. MR 604836, https://doi.org/10.1007/BF01394252
- [76] E. A. Kuznetsov and A. V. Mikhaĭlov, Stability of stationary waves in nonlinear weakly dispersive media, Ž. Èksper. Teoret. Fiz. 67 (1974), no. 5, 1717–1727 (Russian, with English summary); English transl., Soviet Physics JETP 40 (1974), no. 5, 855–859. MR 0387847
- [77] Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490. MR 235310, https://doi.org/10.1002/cpa.3160210503
- [78] Peter D. Lax, Periodic solutions of the KdV equations, Nonlinear wave motion (Proc. AMS-SIAM Summer Sem., Clarkson Coll. Tech., Potsdam, N.Y., 1972) Amer. Math. Soc., Providence, R.I., 1974, pp. 85–96. Lectures in Appl. Math., Vol. 15. MR 0344645
- [79] Wilhelm Magnus and Stanley Winkler, Hill’s equation, Dover Publications, Inc., New York, 1979. Corrected reprint of the 1966 edition. MR 559928
- [80] Vladimir A. Marchenko, Sturm-Liouville operators and applications, Operator Theory: Advances and Applications, vol. 22, Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. MR 897106
- [81] H. P. McKean, Theta functions, solitons, and singular curves, Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977) Lecture Notes in Pure and Appl. Math., vol. 48, Dekker, New York, 1979, pp. 237–254. MR 535596
- [82] H. P. McKean, Geometry of KdV. I. Addition and the unimodular spectral classes, Rev. Mat. Iberoamericana 2 (1986), no. 3, 253–261. MR 908052
- [83] H. P. McKean, Geometry of KdV. II. Three examples, J. Statist. Phys. 46 (1987), no. 5-6, 1115–1143. MR 893135, https://doi.org/10.1007/BF01011159
- [84] H. P. McKean and P. van Moerbeke, The spectrum of Hill’s equation, Invent. Math. 30 (1975), no. 3, 217–274. MR 397076, https://doi.org/10.1007/BF01425567
- [85] H. P. McKean and E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), no. 2, 143–226. MR 427731, https://doi.org/10.1002/cpa.3160290203
- [86] H. P. McKean and E. Trubowitz, Hill’s surfaces and their theta functions, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1042–1085. MR 508448, https://doi.org/10.1090/S0002-9904-1978-14542-X
- [87] A. Menikoff, The existence of unbounded solutions of the Korteweg-de Vries equation, Comm. Pure Appl. Math. 25 (1972), 407–432. MR 303129, https://doi.org/10.1002/cpa.3160250404
- [88] Robert M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical Phys. 9 (1968), 1202–1204. MR 252825, https://doi.org/10.1063/1.1664700
- [89] H. E. Moses, A generalization of the Gel′fand-Levitan equation for the one-dimensional Schrödinger equation, J. Mathematical Phys. 18 (1977), no. 12, 2243–2250. MR 462290, https://doi.org/10.1063/1.523235
- [90] Minoru Murata, Structure of positive solutions to (-Δ+𝑉)𝑢=0 in 𝑅ⁿ, Duke Math. J. 53 (1986), no. 4, 869–943. MR 874676, https://doi.org/10.1215/S0012-7094-86-05347-0
- [91] Michael Martin Nieto, Relationship between supersymmetry and the inverse method in quantum mechanics, Phys. Lett. B 145 (1984), no. 3-4, 208–210. MR 762223, https://doi.org/10.1016/0370-2693(84)90339-3
- [92] S. P. Novikov, A periodic problem for the Korteweg-de Vries equation. I, Funkcional. Anal. i Priložen. 8 (1974), no. 3, 54–66 (Russian). MR 0382878
- [93] S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, and V. E. Zakharov, Theory of solitons, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. The inverse scattering method; Translated from the Russian. MR 779467
- [94] Mayumi Ohmiya, On the generalized soliton solutions of the modified Korteweg-de-Vries equation, Osaka Math. J. 11 (1974), 61–71. MR 352742
- [95] Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- [96] S. N. M. Ruijsenaars and P. J. M. Bongaarts, Scattering theory for one-dimensional step potentials, Ann. Inst. H. Poincaré Sect. A (N.S.) 26 (1977), no. 1, 1–17. MR 443712
- [97] S. N. M. Ruijsenaars and H. Schneider, A new class of integrable systems and its relation to solitons, Ann. Physics 170 (1986), no. 2, 370–405. MR 851627, https://doi.org/10.1016/0003-4916(86)90097-7
- [98] D. H. Sattinger and V. D. Zurkowski, Gauge theory of Bäcklund transformations. II, Phys. D 26 (1987), no. 1-3, 225–250. MR 892446, https://doi.org/10.1016/0167-2789(87)90227-2
- [99] U.-W. Schmincke, On Schrödinger’s factorization method for Sturm-Liouville operators, Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), no. 1-2, 67–84. MR 529570, https://doi.org/10.1017/S0308210500010143
- [100] Barry Simon, Large time behavior of the 𝐿^{𝑝} norm of Schrödinger semigroups, J. Functional Analysis 40 (1981), no. 1, 66–83. MR 607592, https://doi.org/10.1016/0022-1236(81)90073-2
- [101] Anders Sjöberg, On the Korteweg-de Vries equation: existence and uniqueness, J. Math. Anal. Appl. 29 (1970), 569–579. MR 410135, https://doi.org/10.1016/0022-247X(70)90068-5
- [102] V. V. Sokolov and A. B. Šabat, (𝐿,𝐴)-pairs and Riccati type substitution, Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 79–80 (Russian). MR 575223
- [103] O. Steinmann, Äquivalente periodische Potentiale, Helv. Phys. Acta 30 (1957), 515–520 (German). MR 92582
- [104] C. V. Sukumar, Supersymmetric quantum mechanics of one-dimensional systems, J. Phys. A 18 (1985), no. 15, 2917–2936. MR 814636
- [105] Shunichi Tanaka, Modified Korteweg-de Vries equation and scattering theory, Proc. Japan Acad. 48 (1972), 466–469. MR 336127
- [106] Shunichi Tanaka, On the 𝑁-tuple wave solutions of the Korteweg-de Vries equation, Publ. Res. Inst. Math. Sci. 8 (1972/73), 419–427. MR 0328386, https://doi.org/10.2977/prims/1195192955
- [107] Shunichi Tanaka, Some remarks on the modified Korteweg-de Vries equations, Publ. Res. Inst. Math. Sci. 8 (1972/73), 429–437. MR 0326198, https://doi.org/10.2977/prims/1195192956
- [108] Shunichi Tanaka, Non-linear Schrödinger equation and modified Korteweg-de Vries equation; construction of solutions in terms of scattering data, Publ. Res. Inst. Math. Sci. 10 (1974/75), 329–357. MR 0499846, https://doi.org/10.2977/prims/1195191998
- [109] Bernd Thaller, Normal forms of an abstract Dirac operator and applications to scattering theory, J. Math. Phys. 29 (1988), no. 1, 249–257. MR 921790, https://doi.org/10.1063/1.528182
- [110] E. Trubowitz, The inverse problem for periodic potentials, Comm. Pure Appl. Math. 30 (1977), no. 3, 321–337. MR 430403, https://doi.org/10.1002/cpa.3160300305
- [111] Masayoshi Tsutsumi, On global solutions of the generalized Kortweg-de Vries equation, Publ. Res. Inst. Math. Sci. 7 (1971/72), 329–344. MR 0312096, https://doi.org/10.2977/prims/1195193545
- [112] Stephanos Venakides, The zero dispersion limit of the Korteweg-de Vries equation with periodic initial data, Trans. Amer. Math. Soc. 301 (1987), no. 1, 189–226. MR 879569, https://doi.org/10.1090/S0002-9947-1987-0879569-7
- [113] M. Wadati, The exact solution of the modified Korteweg-de Vries equation, J. Phys. Soc. Japan 32 (1972), 1681.
- [114] Miki Wadati, The modified Korteweg-de Vries equation, J. Phys. Soc. Japan 34 (1973), 1289–1296. MR 371251, https://doi.org/10.1143/JPSJ.34.1289
- [115]
M. Wadati and M. Toda, The exact
-soliton solution of the Korteweg-de Vries equation, J. Phys. Soc. Japan 32 (1972), 1403-1411.
- [116] Hugo D. Wahlquist, Bäcklund transformation of potentials of the Korteweg-de Vries equation and the interaction of solitons with cnoidal waves, Bäcklund transformations, the inverse scattering method, solitons, and their applications (Workshop Contact Transformations, Vanderbilt Univ., Nashville, Tenn., 1974) Springer, Berlin, 1976, pp. 162–183. Lecture Notes in Math., Vol. 515. MR 0610088
- [117] H. D. Wahlquist and F. B. Estabrook, Prolongation structures of nonlinear evolution equations, J. Mathematical Phys. 16 (1975), 1–7. MR 358111, https://doi.org/10.1063/1.522396
- [118] G. Wilson, Infinite-dimensional Lie groups and algebraic geometry in soliton theory, Philos. Trans. Roy. Soc. London Ser. A 315 (1985), no. 1533, 393–404. New developments in the theory and application of solitons. MR 836741, https://doi.org/10.1098/rsta.1985.0047
- [119] Yu Kun Zheng and W. L. Chan, Gauge transformation and the higher order Korteweg-de Vries equation, J. Math. Phys. 29 (1988), no. 2, 308–314. MR 927012, https://doi.org/10.1063/1.528068
Retrieve articles in Transactions of the American Mathematical Society with MSC: 35Q53, 34L25, 47E05, 58F07
Retrieve articles in all journals with MSC: 35Q53, 34L25, 47E05, 58F07
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1991-1029000-7
Keywords:
-equation,
commutation methods,
soliton-like solutions,
periodic solutions,
singular solutions
Article copyright:
© Copyright 1991
American Mathematical Society