## The Frobenius-Perron operator on spaces of curves

HTML articles powered by AMS MathViewer

- by P. Góra and A. Boyarsky PDF
- Trans. Amer. Math. Soc.
**324**(1991), 731-746 Request permission

## Abstract:

Let $\tau :{R^2} \to {R^2}$ be a diffeomorphism which leaves a compact set $A$ invariant. Let $B \subset A$ be such that $\tau$ can map out of $B$. Assume that $\tau$ has a hyperbolic fixed point $p$ in $B$. Let $\mathcal {C}$ be a space of smooth curves in $B$. We define a normalized Frobenius-Perron operator on the vector bundle of Lipschitz continuous functions labelled by the curves in $\mathcal {C}$, and use it to prove the existence of a unique, smooth conditionally invariant measure $\mu$ on a segment ${V^u}$ of the unstable manifold of $p$. A formula for the computation of ${f^{\ast }}$, the density of $\mu$, is derived, and $\mu ({\tau ^{ - 1}}{V^u})$ is shown to be equal to the reciprocal of the maximal modulus eigenvalue of the Jacobian of $\tau$ at $p$.## References

- A. Boyarsky,
*A functional equation for a segment of the Hénon map unstable manifold*, Phys. D**21**(1986), no. 2-3, 415–426. MR**862268**, DOI 10.1016/0167-2789(86)90015-1 - Jacob Palis Jr. and Welington de Melo,
*Geometric theory of dynamical systems*, Springer-Verlag, New York-Berlin, 1982. An introduction; Translated from the Portuguese by A. K. Manning. MR**669541** - Giulio Pianigiani and James A. Yorke,
*Expanding maps on sets which are almost invariant. Decay and chaos*, Trans. Amer. Math. Soc.**252**(1979), 351–366. MR**534126**, DOI 10.1090/S0002-9947-1979-0534126-2 - Giulio Pianigiani,
*Conditionally invariant measures and exponential decay*, J. Math. Anal. Appl.**82**(1981), no. 1, 75–88. MR**626742**, DOI 10.1016/0022-247X(81)90226-2 - MichałMisiurewicz and Bolesław Szewc,
*Existence of a homoclinic point for the Hénon map*, Comm. Math. Phys.**75**(1980), no. 3, 285–291. MR**581950**
A. Lasota and P. Rusek, - Rufus Bowen,
*Equilibrium states and the ergodic theory of Anosov diffeomorphisms*, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR**0442989**

*Application of ergodic theory to the determining of cogged bit efficiency*, Arch. Gornictwa

**19**(1974), no. 3, 281.

## Additional Information

- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**324**(1991), 731-746 - MSC: Primary 58F11; Secondary 28D05
- DOI: https://doi.org/10.1090/S0002-9947-1991-1049612-4
- MathSciNet review: 1049612