Random products of contractions in Banach spaces
HTML articles powered by AMS MathViewer
- by J. Dye, M. A. Khamsi and S. Reich
- Trans. Amer. Math. Soc. 325 (1991), 87-99
- DOI: https://doi.org/10.1090/S0002-9947-1991-0989572-5
- PDF | Request permission
Abstract:
We show that the random product of a finite number of $(W)$ contractions converges weakly in all smooth reflexive Banach spaces. If one of the contractions is compact, then the convergence is uniform.References
- I. Amemiya and T. Andô, Convergence of random products of contractions in Hilbert space, Acta Sci. Math. (Szeged) 26 (1965), 239–244. MR 187116
- Felix E. Browder, On some approximation methods for solutions of the Dirichlet problem for linear elliptic equations of arbitrary order, J. Math. Mech. 7 (1958), 69–80. MR 0092070, DOI 10.1512/iumj.1958.7.57006
- Ronald E. Bruck Jr., Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251–262. MR 324491, DOI 10.1090/S0002-9947-1973-0324491-8
- Ronald E. Bruck, Random products of contractions in metric and Banach spaces, J. Math. Anal. Appl. 88 (1982), no. 2, 319–332. MR 667060, DOI 10.1016/0022-247X(82)90195-0
- Ronald E. Bruck, Asymptotic behavior of nonexpansive mappings, Fixed points and nonexpansive mappings (Cincinnati, Ohio, 1982) Contemp. Math., vol. 18, Amer. Math. Soc., Providence, RI, 1983, pp. 1–47. MR 728592, DOI 10.1090/conm/018/728592
- Ronald E. Bruck and Simeon Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), no. 4, 459–470. MR 470761
- John Dye, Convergence of random products of compact contractions in Hilbert space, Integral Equations Operator Theory 12 (1989), no. 1, 12–22. MR 973044, DOI 10.1007/BF01199754
- John Dye, A generalization of a theorem of Amemiya and Ando on the convergence of random products of contractions in Hilbert space, Integral Equations Operator Theory 12 (1989), no. 2, 155–162. MR 986593, DOI 10.1007/BF01195112
- C. Franchetti and W. Light, The alternating algorithm in uniformly convex spaces, J. London Math. Soc. (2) 29 (1984), no. 3, 545–555. MR 754940, DOI 10.1112/jlms/s2-29.3.545
- Israel Halperin, The product of projection operators, Acta Sci. Math. (Szeged) 23 (1962), 96–99. MR 141978
- C. Hamaker and D. C. Solmon, The angles between the null spaces of Xrays, J. Math. Anal. Appl. 62 (1978), no. 1, 1–23. MR 463859, DOI 10.1016/0022-247X(78)90214-7
- Ulrich Krengel, Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411, DOI 10.1515/9783110844641
- Teck Cheong Lim, Asymptotic centers and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980), no. 1, 135–143. MR 599326
- P.-L. Lions, On the Schwarz alternating method. I, First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987) SIAM, Philadelphia, PA, 1988, pp. 1–42. MR 972510
- Simeon Reich, Product formulas, nonlinear semigroups, and accretive operators, J. Functional Analysis 36 (1980), no. 2, 147–168. MR 569251, DOI 10.1016/0022-1236(80)90097-X
- Simeon Reich, Nonlinear semigroups, accretive operators, and applications, Nonlinear phenomena in mathematical sciences (Arlington, Tex., 1980) Academic Press, New York, 1982, pp. 831–838. MR 728043
- Simeon Reich, A limit theorem for projections, Linear and Multilinear Algebra 13 (1983), no. 3, 281–290. MR 700890, DOI 10.1080/03081088308817526
- Kennan T. Smith, Donald C. Solmon, and Sheldon L. Wagner, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1227–1270. MR 490032, DOI 10.1090/S0002-9904-1977-14406-6
- Jonathan E. Spingarn, A projection method for least-squares solutions to overdetermined systems of linear inequalities, Linear Algebra Appl. 86 (1987), 211–236. MR 870941, DOI 10.1016/0024-3795(87)90296-5
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 325 (1991), 87-99
- MSC: Primary 47A05; Secondary 65J10
- DOI: https://doi.org/10.1090/S0002-9947-1991-0989572-5
- MathSciNet review: 989572