Adapted sets of measures and invariant functionals on $L^ p(G)$
HTML articles powered by AMS MathViewer
- by Rodney Nillsen
- Trans. Amer. Math. Soc. 325 (1991), 345-362
- DOI: https://doi.org/10.1090/S0002-9947-1991-1018576-1
- PDF | Request permission
Abstract:
Let $G$ be a locally compact group. If $G$ is compact, let $L_0^p(G)$ denote the functions in ${L^p}(G)$ having zero Haar integral. Let ${M^1}(G)$ denote the probability measures on $G$ and let ${\mathcal {P}^1}(G) = {M^1}(G) \cap {L^1}(G)$. If $S \subseteq {M^1}(G)$, let $\Delta ({L^p}(G),S)$ denote the subspace of ${L^p}(G)$ generated by functions of the form $f - \mu \ast f$, $f \in {L^p}(G)$, $\mu \in S$. If $G$ is compact, $\Delta ({L^p}(G),S) \subseteq L_0^p(G)$ . When $G$ is compact, conditions are given on $S$ which ensure that for some finite subset $F$ of $S$, $\Delta ({L^p}(G),F) = L_0^p(G)$ for all $1 < p < \infty$. The finite subset $F$ will then have the property that every $F$-invariant linear functional on ${L^p}(G)$ is a multiple of Haar measure. Some results of a contrary nature are presented for noncompact groups. For example, if $1 \leq p \leq \infty$, conditions are given upon $G$, and upon subsets $S$ of ${M^1}(G)$ whose elements satisfy certain growth conditions, which ensure that ${L^p}(G)$ has discontinuous, $S$-invariant linear functionals. The results are applied to show that for $1 \leq p \leq \infty$, ${L^p}(\mathbb {R})$ has an infinite, independent family of discontinuous translation invariant functionals which are not ${\mathcal {P}^1}(\mathbb {R})$-invariant.References
- Jean Bourgain, Translation invariant forms on $L^p(G)\ (1<p<\infty )$, Ann. Inst. Fourier (Grenoble) 36 (1986), no.Β 1, 97β104. MR 840715, DOI 10.5802/aif.1039
- Edmond Granirer, Criteria for compactness and for discreteness of locally compact amenable groups, Proc. Amer. Math. Soc. 40 (1973), 615β624. MR 340962, DOI 10.1090/S0002-9939-1973-0340962-8
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- Barry Edward Johnson, A proof of the translation invariant form conjecture for $L^{2}(G)$, Bull. Sci. Math. (2) 107 (1983), no.Β 3, 301β310. MR 719270
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- Gary H. Meisters and Wolfgang M. Schmidt, Translation-invariant linear forms on $L^{2}(G)$ for compact Abelian groups $G$, J. Functional Analysis 11 (1972), 407β424. MR 0346417, DOI 10.1016/0022-1236(72)90063-8
- Gary H. Meisters, Some discontinuous translation-invariant linear forms, J. Functional Analysis 12 (1973), 199β210. MR 0346418, DOI 10.1016/0022-1236(73)90024-4
- Gary Hosler Meisters, Some problems and results on translation-invariant linear forms, Radical Banach algebras and automatic continuity (Long Beach, Calif., 1981) Lecture Notes in Math., vol. 975, Springer, Berlin, 1983, pp.Β 423β444. MR 697605, DOI 10.1007/BFb0064574
- Rodney Nillsen, Group actions and direct sum decompositions of $L^p$ spaces, Proc. Amer. Math. Soc. 106 (1989), no.Β 4, 975β985. MR 972237, DOI 10.1090/S0002-9939-1989-0972237-X
- Jean-Paul Pier, Amenable locally compact groups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 767264
- Joseph Rosenblatt, Invariant means on the continuous bounded functions, Trans. Amer. Math. Soc. 236 (1978), 315β324. MR 473714, DOI 10.1090/S0002-9947-1978-0473714-8
- Joseph Rosenblatt, Translation-invariant linear forms on $L_p(G)$, Proc. Amer. Math. Soc. 94 (1985), no.Β 2, 226β228. MR 784168, DOI 10.1090/S0002-9939-1985-0784168-5
- Joseph Rosenblatt, Ergodic group actions, Arch. Math. (Basel) 47 (1986), no.Β 3, 263β269. MR 861875, DOI 10.1007/BF01192003
- Walter Rudin, Invariant means on $L^{\infty }$, Studia Math. 44 (1972), 219β227. MR 304975, DOI 10.4064/sm-44-3-219-227
- G. A. Willis, Continuity of translation invariant linear functionals on $C_0(G)$ for certain locally compact groups $G$, Monatsh. Math. 105 (1988), no.Β 2, 161β164. MR 930434, DOI 10.1007/BF01501168
- Gordon S. Woodward, Translation-invariant linear forms on $C_{0}(G)$, $C(G)$, $L^{p}(G)$ for noncompact groups, J. Functional Analysis 16 (1974), 205β220. MR 0344801, DOI 10.1016/0022-1236(74)90064-0
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 325 (1991), 345-362
- MSC: Primary 43A15
- DOI: https://doi.org/10.1090/S0002-9947-1991-1018576-1
- MathSciNet review: 1018576