Weak type estimates for a singular convolution operator on the Heisenberg group
HTML articles powered by AMS MathViewer
- by Loukas Grafakos
- Trans. Amer. Math. Soc. 325 (1991), 435-452
- DOI: https://doi.org/10.1090/S0002-9947-1991-1024772-X
- PDF | Request permission
Abstract:
On the Heisenberg group ${\mathbb {H}^n}$ with coordinates $(z,t) \in {\mathbb {C}^n} \times \mathbb {R}$, define the distribution $K(z,t) = L(z)\delta (t)$, where $L(z)$ is a homogeneous distribution on ${\mathbb {C}^n}$ of degree $- 2n$ , smooth away from the origin and $\delta (t)$ is the Dirac mass in the $t$ variable. We prove that the operator given by convolution with $K$ maps ${H^1}({\mathbb {H}^n})$ to weak ${L^1}({\mathbb {H}^n})$.References
- Sagun Chanillo and Michael Christ, Weak $(1,1)$ bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), no. 1, 141–155. MR 883667, DOI 10.1215/S0012-7094-87-05508-6
- Michael Christ, Weak type $(1,1)$ bounds for rough operators, Ann. of Math. (2) 128 (1988), no. 1, 19–42. MR 951506, DOI 10.2307/1971461
- Michael Christ and Daryl Geller, Singular integral characterizations of Hardy spaces on homogeneous groups, Duke Math. J. 51 (1984), no. 3, 547–598. MR 757952, DOI 10.1215/S0012-7094-84-05127-5
- Michael Christ and José Luis Rubio de Francia, Weak type $(1,1)$ bounds for rough operators. II, Invent. Math. 93 (1988), no. 1, 225–237. MR 943929, DOI 10.1007/BF01393693
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948
- G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 657581
- G. B. Folland and E. M. Stein, Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 367477, DOI 10.1002/cpa.3160270403
- D. Geller and E. M. Stein, Singular convolution operators on the Heisenberg group, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 1, 99–103. MR 634441, DOI 10.1090/S0273-0979-1982-14977-1
- D. Geller and E. M. Stein, Estimates for singular convolution operators on the Heisenberg group, Math. Ann. 267 (1984), no. 1, 1–15. MR 737332, DOI 10.1007/BF01458467
- Loukas Grafakos, Endpoint bounds for an analytic family of Hilbert transforms, Duke Math. J. 62 (1991), no. 1, 23–59. MR 1104322, DOI 10.1215/S0012-7094-91-06202-2
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 325 (1991), 435-452
- MSC: Primary 43A80; Secondary 22E30, 42B20
- DOI: https://doi.org/10.1090/S0002-9947-1991-1024772-X
- MathSciNet review: 1024772