Support algebras of -unital
-algebras and their quasi-multipliers
Author:
Hua Xin Lin
Journal:
Trans. Amer. Math. Soc. 325 (1991), 829-854
MSC:
Primary 46L05
DOI:
https://doi.org/10.1090/S0002-9947-1991-1008698-3
MathSciNet review:
1008698
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We study certain dense hereditary -subalgebras of
-unital
-algebras and their relations with the Pedersen ideals. The quasi-multipliers of the dense hereditary
-subalgebras are also studied.
- [1] Charles A. Akemann and Gert K. Pedersen, Complications of semicontinuity in 𝐶*-algebra theory, Duke Math. J. 40 (1973), 785–795. MR 0358361
- [2] Bruce E. Blackadar, A simple 𝐶*-algebra with no nontrivial projections, Proc. Amer. Math. Soc. 78 (1980), no. 4, 504–508. MR 556621, https://doi.org/10.1090/S0002-9939-1980-0556621-6
- [3]
L. G. Brown, Close hereditary
-algebras and the structure of quasi-multipliers, preprint.
- [4] Jacques Dixmier, 𝐶*-algebras, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett; North-Holland Mathematical Library, Vol. 15. MR 0458185
- [5] Edward G. Effros, Dimensions and 𝐶*-algebras, CBMS Regional Conference Series in Mathematics, vol. 46, Conference Board of the Mathematical Sciences, Washington, D.C., 1981. MR 623762
- [6] George A. Elliott and Dorte Olesen, A simple proof of the Dauns-Hofmann theorem, Math. Scand. 34 (1974), 231–234. MR 0355617, https://doi.org/10.7146/math.scand.a-11524
- [7] J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233–280. MR 0164248, https://doi.org/10.1007/BF02545788
- [8] Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- [9] Helge Elbrønd Jensen, Scattered 𝐶*-algebras, Math. Scand. 41 (1977), no. 2, 308–314. MR 0482242, https://doi.org/10.7146/math.scand.a-11723
- [10] Helge Elbrønd Jensen, Scattered 𝐶*-algebras. II, Math. Scand. 43 (1978), no. 2, 308–310 (1979). MR 531308, https://doi.org/10.7146/math.scand.a-11782
- [11] A. J. Lazar and D. C. Taylor, Multipliers of Pedersen’s ideal, Mem. Amer. Math. Soc. 5 (1976), no. 169, iii+111. MR 0412823, https://doi.org/10.1090/memo/0169
- [12]
A. J. Lazar, On scattered
-algebras, preprint.
- [13]
H. Lin, The structure of quasi-multipliers of
-algebras, Trans. Amer. Math. Soc. 315 (1989), 147-172.
- [14] Hua Xin Lin, Fundamental approximate identities and quasi-multipliers of simple 𝐴𝐹𝐶*-algebras, J. Funct. Anal. 79 (1988), no. 1, 32–43. MR 950082, https://doi.org/10.1016/0022-1236(88)90028-6
- [15]
-, On
-finite integrals on
-algebras , Chinese Ann. Math. 10B (1989), 537-548.
- [16] K. McKennon, The quasi-multiplier conjecture, Proc. Amer. Math. Soc. 72 (1978), 258-260.
- [17] Gert Kjaergȧrd Pedersen, Measure theory for 𝐶* algebras, Math. Scand. 19 (1966), 131–145. MR 0212582, https://doi.org/10.7146/math.scand.a-10802
- [18] Gert K. Pedersen, 𝐶*-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- [19]
-,
-algebras and corona
-algebras, Contributions to non-commutative topology, J. Operator Theory 15 (1986), 15-32.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L05
Retrieve articles in all journals with MSC: 46L05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1991-1008698-3
Article copyright:
© Copyright 1991
American Mathematical Society