Absolute continuity results for superprocesses with some applications
HTML articles powered by AMS MathViewer
- by Steven N. Evans and Edwin Perkins
- Trans. Amer. Math. Soc. 325 (1991), 661-681
- DOI: https://doi.org/10.1090/S0002-9947-1991-1012522-2
- PDF | Request permission
Abstract:
Let ${X^1}$ and ${X^2}$ be instances of a measure-valued Dawson-Watanabe $\xi$-super process where the underlying spatial motions are given by a Borel right process, $\xi$, and where the branching mechanism has finite variance. A necessary and sufficient condition on $X_0^1$ and $X_0^2$ is found for the law of $X_s^1$ to be absolutely continuous with respect to the law of $X_t^2$. The conditions are the natural absolute continuity conditions on $\xi$, but some care must be taken with the set of times $s$, $t$ being considered. The result is used to study the closed support of super-Brownian motion and give sufficient conditions for the existence of a nontrivial "collision measure" for a pair of independent super-Lévy processes or, more generally, for a super-Lévy process and a fixed measure. The collision measure gauges the extent of overlap of the two measures. As a final application, we give an elementary proof of the instantaneous propagation of a super-Lévy process to all points to which the underlying Lévy process can jump. This result is then extended to a much larger class of superprocesses using different techniques.References
- Albert Benveniste and Jean Jacod, Systèmes de Lévy des processus de Markov, Invent. Math. 21 (1973), 183–198 (French). MR 343375, DOI 10.1007/BF01390195
- R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
- D. A. Dawson, The critical measure diffusion process, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 40 (1977), no. 2, 125–145. MR 478374, DOI 10.1007/BF00532877
- D. A. Dawson, I. Iscoe, and E. A. Perkins, Super-Brownian motion: path properties and hitting probabilities, Probab. Theory Related Fields 83 (1989), no. 1-2, 135–205. MR 1012498, DOI 10.1007/BF00333147 C. Dellacherie and P. A. Meyer, Probability and potential, North-Holland Math. Stud., no. 29, North-Holland, Amsterdam, 1978.
- Eugene B. Dynkin, Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self-intersection local times, Astérisque 157-158 (1988), 147–171. Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987). MR 976217 N. El Karoui and S. Roelly-Coppoletta, Study of a general class of measure-valued branching processes: A Lévy-Hincin representation, preprint.
- Stewart N. Ethier and Thomas G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. Characterization and convergence. MR 838085, DOI 10.1002/9780470316658
- P. J. Fitzsimmons, Construction and regularity of measure-valued Markov branching processes, Israel J. Math. 64 (1988), no. 3, 337–361 (1989). MR 995575, DOI 10.1007/BF02882426
- Ĭ. Ī. Gīhman and A. V. Skorohod, The theory of stochastic processes. II, Die Grundlehren der mathematischen Wissenschaften, Band 218, Springer-Verlag, New York-Heidelberg, 1975. Translated from the Russian by Samuel Kotz. MR 0375463
- I. Iscoe, A weighted occupation time for a class of measure-valued branching processes, Probab. Theory Relat. Fields 71 (1986), no. 1, 85–116. MR 814663, DOI 10.1007/BF00366274
- Olav Kallenberg, Random measures, 3rd ed., Akademie-Verlag, Berlin; Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1983. MR 818219
- Frank B. Knight, Essentials of Brownian motion and diffusion, Mathematical Surveys, No. 18, American Mathematical Society, Providence, R.I., 1981. MR 613983 P. A. Meyer, Intégrales stochastiques, Séminaire de Probabilités I, Lecture Notes in Math., Vol. 39, Springer-Verlag, New York, Heidelberg, and Berlin, 1967.
- Edwin Perkins, Polar sets and multiple points for super-Brownian motion, Ann. Probab. 18 (1990), no. 2, 453–491. MR 1055416
- Edwin Perkins, The Hausdorff measure of the closed support of super-Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), no. 2, 205–224 (English, with French summary). MR 1001027
- Edwin A. Perkins, A space-time property of a class of measure-valued branching diffusions, Trans. Amer. Math. Soc. 305 (1988), no. 2, 743–795. MR 924777, DOI 10.1090/S0002-9947-1988-0924777-0 R. Tribe, Ph.D. thesis, Univ. of British Columbia.
- Shinzo Watanabe, A limit theorem of branching processes and continuous state branching processes, J. Math. Kyoto Univ. 8 (1968), 141–167. MR 237008, DOI 10.1215/kjm/1250524180 M. Yor, Continuité des temps locaux, Temps Locaux, Astérisque, Vols. 52-53, Soc. Math. France, Paris, 1978.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 325 (1991), 661-681
- MSC: Primary 60G30; Secondary 60J80
- DOI: https://doi.org/10.1090/S0002-9947-1991-1012522-2
- MathSciNet review: 1012522