## Absolute continuity results for superprocesses with some applications

HTML articles powered by AMS MathViewer

- by Steven N. Evans and Edwin Perkins PDF
- Trans. Amer. Math. Soc.
**325**(1991), 661-681 Request permission

## Abstract:

Let ${X^1}$ and ${X^2}$ be instances of a measure-valued Dawson-Watanabe $\xi$-super process where the underlying spatial motions are given by a Borel right process, $\xi$, and where the branching mechanism has finite variance. A necessary and sufficient condition on $X_0^1$ and $X_0^2$ is found for the law of $X_s^1$ to be absolutely continuous with respect to the law of $X_t^2$. The conditions are the natural absolute continuity conditions on $\xi$, but some care must be taken with the set of times $s$, $t$ being considered. The result is used to study the closed support of super-Brownian motion and give sufficient conditions for the existence of a nontrivial "collision measure" for a pair of independent super-Lévy processes or, more generally, for a super-Lévy process and a fixed measure. The collision measure gauges the extent of overlap of the two measures. As a final application, we give an elementary proof of the instantaneous propagation of a super-Lévy process to all points to which the underlying Lévy process can jump. This result is then extended to a much larger class of superprocesses using different techniques.## References

- Albert Benveniste and Jean Jacod,
*Systèmes de Lévy des processus de Markov*, Invent. Math.**21**(1973), 183–198 (French). MR**343375**, DOI 10.1007/BF01390195 - R. M. Blumenthal and R. K. Getoor,
*Markov processes and potential theory*, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR**0264757** - D. A. Dawson,
*The critical measure diffusion process*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**40**(1977), no. 2, 125–145. MR**478374**, DOI 10.1007/BF00532877 - D. A. Dawson, I. Iscoe, and E. A. Perkins,
*Super-Brownian motion: path properties and hitting probabilities*, Probab. Theory Related Fields**83**(1989), no. 1-2, 135–205. MR**1012498**, DOI 10.1007/BF00333147
C. Dellacherie and P. A. Meyer, - Eugene B. Dynkin,
*Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self-intersection local times*, Astérisque**157-158**(1988), 147–171. Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987). MR**976217**
N. El Karoui and S. Roelly-Coppoletta, - Stewart N. Ethier and Thomas G. Kurtz,
*Markov processes*, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. Characterization and convergence. MR**838085**, DOI 10.1002/9780470316658 - P. J. Fitzsimmons,
*Construction and regularity of measure-valued Markov branching processes*, Israel J. Math.**64**(1988), no. 3, 337–361 (1989). MR**995575**, DOI 10.1007/BF02882426 - Ĭ. Ī. Gīhman and A. V. Skorohod,
*The theory of stochastic processes. II*, Die Grundlehren der mathematischen Wissenschaften, Band 218, Springer-Verlag, New York-Heidelberg, 1975. Translated from the Russian by Samuel Kotz. MR**0375463** - I. Iscoe,
*A weighted occupation time for a class of measure-valued branching processes*, Probab. Theory Relat. Fields**71**(1986), no. 1, 85–116. MR**814663**, DOI 10.1007/BF00366274 - Olav Kallenberg,
*Random measures*, 3rd ed., Akademie-Verlag, Berlin; Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1983. MR**818219** - Frank B. Knight,
*Essentials of Brownian motion and diffusion*, Mathematical Surveys, No. 18, American Mathematical Society, Providence, R.I., 1981. MR**613983**
P. A. Meyer, - Edwin Perkins,
*Polar sets and multiple points for super-Brownian motion*, Ann. Probab.**18**(1990), no. 2, 453–491. MR**1055416** - Edwin Perkins,
*The Hausdorff measure of the closed support of super-Brownian motion*, Ann. Inst. H. Poincaré Probab. Statist.**25**(1989), no. 2, 205–224 (English, with French summary). MR**1001027** - Edwin A. Perkins,
*A space-time property of a class of measure-valued branching diffusions*, Trans. Amer. Math. Soc.**305**(1988), no. 2, 743–795. MR**924777**, DOI 10.1090/S0002-9947-1988-0924777-0
R. Tribe, Ph.D. thesis, Univ. of British Columbia.
- Shinzo Watanabe,
*A limit theorem of branching processes and continuous state branching processes*, J. Math. Kyoto Univ.**8**(1968), 141–167. MR**237008**, DOI 10.1215/kjm/1250524180
M. Yor,

*Probability and potential*, North-Holland Math. Stud., no. 29, North-Holland, Amsterdam, 1978.

*Study of a general class of measure-valued branching processes*:

*A Lévy-Hincin representation*, preprint.

*Intégrales stochastiques*, Séminaire de Probabilités I, Lecture Notes in Math., Vol. 39, Springer-Verlag, New York, Heidelberg, and Berlin, 1967.

*Continuité des temps locaux*, Temps Locaux, Astérisque, Vols. 52-53, Soc. Math. France, Paris, 1978.

## Additional Information

- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**325**(1991), 661-681 - MSC: Primary 60G30; Secondary 60J80
- DOI: https://doi.org/10.1090/S0002-9947-1991-1012522-2
- MathSciNet review: 1012522