Second-order elliptic operators and heat kernels on Lie groups
Authors:
Ola Bratteli and Derek W. Robinson
Journal:
Trans. Amer. Math. Soc. 325 (1991), 683-713
MSC:
Primary 22D10; Secondary 35J99, 46L99, 47F05, 58G11
DOI:
https://doi.org/10.1090/S0002-9947-1991-1041043-6
MathSciNet review:
1041043
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Arendt, Batty, and Robinson proved that each second-order strongly elliptic operator $C$ associated with left translations on the ${L_p}$-spaces of a Lie group $G$ generates an interpolating family of semigroups $T$, whenever the coefficients of $C$ are sufficiently smooth. We establish that $T$ has an integral kernel $K$ satisfying the bounds \[ a\prime {t^{ - d/2}}{e^{ - b\prime |g{h^{ - 1}}{|^2}/t}}{e^{ - \omega ’t}} \leq {K_t}(g;h) \leq a{t^{ - d/2}}{e^{ - b|g{h^{ - 1}}{|^2}/t}}{e^{\omega t}},\] where $d$ is the dimension of $G$, $|g{h^{ - 1}}|$ is the right invariant distance from $h$ to $g$, and $a\prime$, $b\prime$, $\omega \prime$, etc. are positive constants. Both bounds are derived by generalization of Nash’s arguments for pure second-order operators on ${{\mathbf {R}}^d}$.
- Wolfgang Arendt, Charles J. K. Batty, and Derek W. Robinson, Positive semigroups generated by elliptic operators on Lie groups, J. Operator Theory 23 (1990), no. 2, 369–407. MR 1066813
- Ola Bratteli, Frederick M. Goodman, Palle E. T. Jorgensen, and Derek W. Robinson, The heat semigroup and integrability of Lie algebras, J. Funct. Anal. 79 (1988), no. 2, 351–397. MR 953908, DOI https://doi.org/10.1016/0022-1236%2888%2990018-3
- Jean-Michel Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), no. fasc. 1, 277–304 xii (French, with English summary). MR 262881
- Ola Bratteli and Derek W. Robinson, Operator algebras and quantum-statistical mechanics. II, Springer-Verlag, New York-Berlin, 1981. Equilibrium states. Models in quantum-statistical mechanics; Texts and Monographs in Physics. MR 611508
- H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643
- E. A. Carlen, S. Kusuoka, and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 245–287 (English, with French summary). MR 898496
- E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math. 109 (1987), no. 2, 319–333. MR 882426, DOI https://doi.org/10.2307/2374577
- E. B. Fabes and D. W. Stroock, A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash, Arch. Rational Mech. Anal. 96 (1986), no. 4, 327–338. MR 855753, DOI https://doi.org/10.1007/BF00251802
- Lars Gȧrding, Vecteurs analytiques dans les représentations des groups de Lie, Bull. Soc. Math. France 88 (1960), 73–93 (French). MR 119104
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 159139, DOI https://doi.org/10.1002/cpa.3160170106
- J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954. MR 100158, DOI https://doi.org/10.2307/2372841
- Derek W. Robinson, Elliptic differential operators on Lie groups, J. Funct. Anal. 97 (1991), no. 2, 373–402. MR 1111188, DOI https://doi.org/10.1016/0022-1236%2891%2990008-S
- Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492. MR 82586, DOI https://doi.org/10.1090/S0002-9947-1956-0082586-0 ---, Topics in harmonic analysis, Ann. of Math. Studies, no. 63, Princeton Univ. Press, Princeton, N. J., 1970.
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
- N. Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal. 76 (1988), no. 2, 346–410. MR 924464, DOI https://doi.org/10.1016/0022-1236%2888%2990041-9
- Kôsaku Yosida, Functional analysis, 4th ed., Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 123. MR 0350358
Retrieve articles in Transactions of the American Mathematical Society with MSC: 22D10, 35J99, 46L99, 47F05, 58G11
Retrieve articles in all journals with MSC: 22D10, 35J99, 46L99, 47F05, 58G11
Additional Information
Article copyright:
© Copyright 1991
American Mathematical Society