Crossed simplicial groups and their associated homology
HTML articles powered by AMS MathViewer
 by Zbigniew Fiedorowicz and JeanLouis Loday PDF
 Trans. Amer. Math. Soc. 326 (1991), 5787 Request permission
Abstract:
We introduce a notion of crossed simplicial group, which generalizes Connes’ notion of the cyclic category. We show that this concept has several equivalent descriptions and give a complete classification of these structures. We also show how many of Connes’ results can be generalized and simplified in this framework.References

R. Aboughazi, Groupes simpliciaux croisés symétriques et hyperoctahédral, Preprint, IRMA, Strasbourg, 1986.
 A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, SpringerVerlag, BerlinNew York, 1972. MR 0365573
 Dan Burghelea, Cyclic homology and the algebraic $K$theory of spaces. I, Applications of algebraic $K$theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 89–115. MR 862632, DOI 10.1090/conm/055.1/862632
 Alain Connes, Cohomologie cyclique et foncteurs $\textrm {Ext}^n$, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 23, 953–958 (French, with English summary). MR 777584
 W. G. Dwyer and D. M. Kan, Normalizing the cyclic modules of Connes, Comment. Math. Helv. 60 (1985), no. 4, 582–600. MR 826872, DOI 10.1007/BF02567433 F. Goichot, Homologie cyclique: produits, généralisations, Preprint, IRMA, Strasbourg, 1986.
 JeanLouis Loday, Homologies diédrale et quaternionique, Adv. in Math. 66 (1987), no. 2, 119–148 (French). MR 917736, DOI 10.1016/00018708(87)900326
 JeanLouis Loday and Daniel Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), no. 4, 569–591. MR 780077, DOI 10.1007/BF02566367
 Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, SpringerVerlag, New YorkBerlin, 1971. MR 0354798
 Daniel Quillen, Higher algebraic $K$theory. I, Algebraic $K$theory, I: Higher $K$theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129
 M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, SpringerVerlag, New YorkHeidelberg, 1972. MR 0507234
Additional Information
 © Copyright 1991 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 326 (1991), 5787
 MSC: Primary 18F25; Secondary 18D05, 19D55, 20F36, 55U10
 DOI: https://doi.org/10.1090/S00029947199109981254
 MathSciNet review: 998125