## Extensions of measures invariant under countable groups of transformations

HTML articles powered by AMS MathViewer

- by Adam Krawczyk and Piotr Zakrzewski PDF
- Trans. Amer. Math. Soc.
**326**(1991), 211-226 Request permission

## Abstract:

We consider countably additive, nonnegative, extended real-valued measures vanishing on singletons. Given a group $G$ of bijections of a set $X$ and a $G$-invariant measure $m$ on $X$ we ask whether there exists a proper $G$-invariant extension of $m$. We prove, among others, that if $\mathbb {Q}$ is the group of rational translations of the reals, then there is no maximal $\mathbb {Q}$-invariant extension of the Lebesgue measure on $\mathbb {R}$. On the other hand, if ${2^\omega }$ is real-valued measurable, then there exists a maximal $\sigma$-finite $\mathbb {Q}$-invariant measure defined on a proper $\sigma$-algebra of subsets of $\mathbb {R}$.## References

- R. G. Burns and V. W. D. Hale,
*A note on group rings of certain torsion-free groups*, Canad. Math. Bull.**15**(1972), 441–445. MR**310046**, DOI 10.4153/CMB-1972-080-3 - Krzysztof Ciesielski,
*Algebraically invariant extensions of $\sigma$-finite measures on Euclidean space*, Trans. Amer. Math. Soc.**318**(1990), no. 1, 261–273. MR**946422**, DOI 10.1090/S0002-9947-1990-0946422-X - Krzysztof Ciesielski and Andrzej Pelc,
*Extensions of invariant measures on Euclidean spaces*, Fund. Math.**125**(1985), no. 1, 1–10. MR**813984**, DOI 10.4064/fm-125-1-1-10 - Daniel R. Farkas,
*Crystallographic groups and their mathematics*, Rocky Mountain J. Math.**11**(1981), no. 4, 511–551. MR**639438**, DOI 10.1216/RMJ-1981-11-4-511 - A. B. Kharazishvili,
*Invariantnye prodolzheniya mery lebega*, Tbilis. Gos. Univ., Tbilisi, 1983 (Russian). MR**705928** - Edwin Hewitt and Kenneth A. Ross,
*Abstract harmonic analysis. Vol. I*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR**551496** - A. Hulanicki,
*Invariant extensions of the Lebesgue measure*, Fund. Math.**51**(1962/63), 111–115. MR**142709**, DOI 10.4064/fm-51-2-111-115 - M. I. Kargapolov and Ju. I. Merzljakov,
*Fundamentals of the theory of groups*, Graduate Texts in Mathematics, vol. 62, Springer-Verlag, New York-Berlin, 1979. Translated from the second Russian edition by Robert G. Burns. MR**551207**
K. Kunen, Ph.D. thesis.
- K. Kuratowski and A. Maitra,
*Some theorems on selectors and their applications to semi-continuous decompositions*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**22**(1974), 877–881 (English, with Russian summary). MR**394558** - J. Łoś and E. Marczewski,
*Extensions of measure*, Fund. Math.**36**(1949), 267–276. MR**35327**, DOI 10.4064/fm-36-1-267-276 - Andrzej Pelc,
*Invariant measures and ideals on discrete groups*, Dissertationes Math. (Rozprawy Mat.)**255**(1986), 47. MR**872392** - C. Ryll-Nardzewski and R. Telgársky,
*The nonexistence of universal invariant measures*, Proc. Amer. Math. Soc.**69**(1978), no. 2, 240–242. MR**466494**, DOI 10.1090/S0002-9939-1978-0466494-9
A. Strojnowski, - Stan Wagon,
*The Banach-Tarski paradox*, Encyclopedia of Mathematics and its Applications, vol. 24, Cambridge University Press, Cambridge, 1985. With a foreword by Jan Mycielski. MR**803509**, DOI 10.1017/CBO9780511609596 - Frank W. Warner,
*Foundations of differentiable manifolds and Lie groups*, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition. MR**722297** - Piotr Zakrzewski,
*The existence of universal invariant measures on large sets*, Fund. Math.**133**(1989), no. 2, 113–124. MR**1059152**, DOI 10.4064/fm-133-2-113-124 - Piotr Zakrzewski,
*Extensions of isometrically invariant measures on Euclidean spaces*, Proc. Amer. Math. Soc.**110**(1990), no. 2, 325–331. MR**1021216**, DOI 10.1090/S0002-9939-1990-1021216-3

*On residually finite groups of isometries of*${{\mathbf {R}}^n}$

*and extensions of measures*, (to appear). E. Szpilrajn,

*Sur l’extension de la mesure lebesguienne*, Fund. Math.

**25**(1935), 551-558.

## Additional Information

- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**326**(1991), 211-226 - MSC: Primary 28C10; Secondary 03E05, 03E55
- DOI: https://doi.org/10.1090/S0002-9947-1991-0998127-8
- MathSciNet review: 998127