The solution of length four equations over groups
HTML articles powered by AMS MathViewer
- by Martin Edjvet and James Howie
- Trans. Amer. Math. Soc. 326 (1991), 345-369
- DOI: https://doi.org/10.1090/S0002-9947-1991-1002920-5
- PDF | Request permission
Abstract:
Let $G$ be a group, $F$ the free group generated by $t$ and let $r(t) \in G \ast F$. The equation $r(t) = 1$ is said to have a solution over $G$ if it has a solution in some group that contains $G$. This is equivalent to saying that the natural map $G \to \langle G \ast F|r(t)\rangle$ is injective. There is a conjecture (attributed to M. Kervaire and F. Laudenbach) that injectivity fails only if the exponent sum of $t$ in $r(t)$ is zero. In this paper we verify this conjecture in the case when the sum of the absolute values of the exponent of $t$ in $r(t)$ is equal to four.References
- D. J. Collins and J. Huebschmann, Spherical diagrams and identities among relations, Math. Ann. 261 (1982), no. 2, 155–183. MR 675732, DOI 10.1007/BF01456216
- M. Edjvet, Solutions of certain sets of equations over groups, Groups—St. Andrews 1989, Vol. 1, London Math. Soc. Lecture Note Ser., vol. 159, Cambridge Univ. Press, Cambridge, 1991, pp. 105–123. MR 1123977
- Murray Gerstenhaber and Oscar S. Rothaus, The solution of sets of equations in groups, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 1531–1533. MR 166296, DOI 10.1073/pnas.48.9.1531
- James Howie, The solution of length three equations over groups, Proc. Edinburgh Math. Soc. (2) 26 (1983), no. 1, 89–96. MR 695646, DOI 10.1017/S0013091500028108
- Frank Levin, Solutions of equations over groups, Bull. Amer. Math. Soc. 68 (1962), 603–604. MR 142643, DOI 10.1090/S0002-9904-1962-10868-4
- Roger C. Lyndon, Equations in groups, Bol. Soc. Brasil. Mat. 11 (1980), no. 1, 79–102. MR 607019, DOI 10.1007/BF02584882 —, Equations over cyclic groups, Preprint, Université Paris VII, 1981.
- Roger Lyndon, Problems in combinatorial group theory, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 3–33. MR 895607
- B. H. Neumann, Adjunction of elements to groups, J. London Math. Soc. 18 (1943), 4–11. MR 8808, DOI 10.1112/jlms/s1-18.1.4
- O. S. Rothaus, On the non-triviality of some group extensions given by generators and relations, Ann. of Math. (2) 106 (1977), no. 3, 599–612. MR 467760, DOI 10.2307/1971070
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 326 (1991), 345-369
- MSC: Primary 20E06; Secondary 20F05, 20F06
- DOI: https://doi.org/10.1090/S0002-9947-1991-1002920-5
- MathSciNet review: 1002920