## Algebraic hulls and smooth orbit equivalence

HTML articles powered by AMS MathViewer

- by Alessandra Iozzi PDF
- Trans. Amer. Math. Soc.
**326**(1991), 371-384 Request permission

## Abstract:

For $i = 1,2,$ let ${\mathcal {F}_i}$ be foliations on smooth manifolds ${M_i}$ determined by the actions of connected Lie groups ${H_i}$; we describe here some results which provide an obstruction, in terms of a geometric invariant of the actions, to the existence of a diffeomorphism between the $\mathcal {F}_i’{\text {s}}$.## References

- Diego Benardete,
*Topological equivalence of flows on homogeneous spaces, and divergence of one-parameter subgroups of Lie groups*, Trans. Amer. Math. Soc.**306**(1988), no. 2, 499–527. MR**933304**, DOI 10.1090/S0002-9947-1988-0933304-3 - A. Connes, J. Feldman, and B. Weiss,
*An amenable equivalence relation is generated by a single transformation*, Ergodic Theory Dynam. Systems**1**(1981), no. 4, 431–450 (1982). MR**662736**, DOI 10.1017/s014338570000136x - H. A. Dye,
*On groups of measure preserving transformations. I*, Amer. J. Math.**81**(1959), 119–159. MR**131516**, DOI 10.2307/2372852 - H. A. Dye,
*On groups of measure preserving transformations. II*, Amer. J. Math.**85**(1963), 551–576. MR**158048**, DOI 10.2307/2373108 - Alessandra Iozzi,
*Invariant geometric structures: a nonlinear extension of the Borel identity theorem*, Amer. J. Math.**114**(1992), no. 3, 627–648. MR**1165356**, DOI 10.2307/2374772 - Wolfgang Krieger,
*On ergodic flows and the isomorphism of factors*, Math. Ann.**223**(1976), no. 1, 19–70. MR**415341**, DOI 10.1007/BF01360278 - Brian Marcus,
*Topological conjugacy of horocycle flows*, Amer. J. Math.**105**(1983), no. 3, 623–632. MR**704217**, DOI 10.2307/2374316 - P. Pansu and Robert J. Zimmer,
*Rigidity of locally homogeneous metrics of negative curvature on the leaves of a foliation*, Israel J. Math.**68**(1989), no. 1, 56–62. MR**1035880**, DOI 10.1007/BF02764968 - William Parry,
*Metric classification of ergodic nilflows and unipotent affines*, Amer. J. Math.**93**(1971), 819–828. MR**284567**, DOI 10.2307/2373472 - Arlan Ramsay,
*Virtual groups and group actions*, Advances in Math.**6**(1971), 253–322 (1971). MR**281876**, DOI 10.1016/0001-8708(71)90018-1 - Marina Ratner,
*Ergodic theory in hyperbolic space*, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 309–334. MR**737411**, DOI 10.1090/conm/026/737411 - Dave Witte,
*Zero-entropy affine maps on homogeneous spaces*, Amer. J. Math.**109**(1987), no. 5, 927–961. MR**910358**, DOI 10.2307/2374495 - Dave Witte,
*Topological equivalence of foliations of homogeneous spaces*, Trans. Amer. Math. Soc.**317**(1990), no. 1, 143–166. MR**942428**, DOI 10.1090/S0002-9947-1990-0942428-5 - Robert J. Zimmer,
*Orbit spaces of unitary representations, ergodic theory, and simple Lie groups*, Ann. of Math. (2)**106**(1977), no. 3, 573–588. MR**466406**, DOI 10.2307/1971068 - Robert J. Zimmer,
*Strong rigidity for ergodic actions of semisimple Lie groups*, Ann. of Math. (2)**112**(1980), no. 3, 511–529. MR**595205**, DOI 10.2307/1971090 - Robert J. Zimmer,
*On the cohomology of ergodic group actions*, Israel J. Math.**35**(1980), no. 4, 289–300. MR**594334**, DOI 10.1007/BF02760654 - Robert J. Zimmer,
*Orbit equivalence and rigidity of ergodic actions of Lie groups*, Ergodic Theory Dynam. Systems**1**(1981), no. 2, 237–253. MR**661822**, DOI 10.1017/s0143385700009251
—, - Robert J. Zimmer,
*Ergodic theory and the automorphism group of a $G$-structure*, Group representations, ergodic theory, operator algebras, and mathematical physics (Berkeley, Calif., 1984) Math. Sci. Res. Inst. Publ., vol. 6, Springer, New York, 1987, pp. 247–278. MR**880380**, DOI 10.1007/978-1-4612-4722-7_{1}0

*Ergodic theory and semisimple groups*, Birkhäuser, Boston, Mass., 1984.

## Additional Information

- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**326**(1991), 371-384 - MSC: Primary 22D40; Secondary 28D15, 57S99
- DOI: https://doi.org/10.1090/S0002-9947-1991-1002921-7
- MathSciNet review: 1002921