Some model theory of compact Lie groups
HTML articles powered by AMS MathViewer
- by Ali Nesin and Anand Pillay
- Trans. Amer. Math. Soc. 326 (1991), 453-463
- DOI: https://doi.org/10.1090/S0002-9947-1991-1002922-9
- PDF | Request permission
Abstract:
We consider questions of first order definability in a compact Lie group $G$. Our main result is that if such $G$ is simple (and centerless) then the Lie group structure of $G$ is first order definable from the abstract group structure. Along the way we also show (i) if $G$ is non-Abelian and connected then a copy of the field $\mathbb {R}$ is interpretable. in $(G, \cdot )$, and (ii) any "$1$-dimensional" field interpretable in $(\mathbb {R}, +, \cdot )$ is definably (i.e., semialgebraically) isomorphic to the ground field $\mathbb {R}$.References
- F. Bachman, Geometric structures, Nauka, Moscow, 1969.
- Armand Borel, Groupes linéaires algébriques, Ann. of Math. (2) 64 (1956), 20–82 (French). MR 93006, DOI 10.2307/1969949
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- Nicolas Bourbaki, Éléments de mathématique: groupes et algèbres de Lie, Masson, Paris, 1982 (French). Chapitre 9. Groupes de Lie réels compacts. [Chapter 9. Compact real Lie groups]. MR 682756 C. Chevalley, Theory of Lie groups, Princeton Univ. Press, Princeton, N. J., 1946.
- Ali Nesin, Nonsolvable groups of Morley rank $3$, J. Algebra 124 (1989), no. 1, 199–218. MR 1005703, DOI 10.1016/0021-8693(89)90159-2
- Anand Pillay, On groups and fields definable in $o$-minimal structures, J. Pure Appl. Algebra 53 (1988), no. 3, 239–255. MR 961362, DOI 10.1016/0022-4049(88)90125-9 An application of model theory to real and $p$-adic algebraic groups, preprint, 1988.
- Bruno Poizat, Groupes stables, Nur al-Mantiq wal-Maʾrifah [Light of Logic and Knowledge], vol. 2, Bruno Poizat, Lyon, 1987 (French). Une tentative de conciliation entre la géométrie algébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical logic]. MR 902156
- L. S. Pontryagin, Topological groups, Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1966. Translated from the second Russian edition by Arlen Brown. MR 0201557
- Masahiro Shiota, Nash manifolds, Lecture Notes in Mathematics, vol. 1269, Springer-Verlag, Berlin, 1987. MR 904479, DOI 10.1007/BFb0078571
- B. I. Zil′ber, Some model theory of simple algebraic groups over algebraically closed fields, Colloq. Math. 48 (1984), no. 2, 173–180. MR 758524, DOI 10.4064/cm-48-2-173-180
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 326 (1991), 453-463
- MSC: Primary 03C40; Secondary 03C60, 22E15
- DOI: https://doi.org/10.1090/S0002-9947-1991-1002922-9
- MathSciNet review: 1002922