Brownian motion in a wedge with variable skew reflection
HTML articles powered by AMS MathViewer
- by L. C. G. Rogers
- Trans. Amer. Math. Soc. 326 (1991), 227-236
- DOI: https://doi.org/10.1090/S0002-9947-1991-1008701-0
- PDF | Request permission
Abstract:
Does planar Brownian motion confined to a wedge by skew reflection on the sides approach the vertex of the wedge? This question has been answered by Varadhan and Williams in the case where the direction of reflection is constant on each of the sides, but here we address the question when the direction reflected is allowed to vary. A necessary condition, and a sufficient condition, are obtained for the vertex to be reached. The conditions are of a geometric nature, and the gap between them is quite small.References
- R. Dante DeBlassie, Explicit semimartingale representation of Brownian motion in a wedge, Stochastic Process. Appl. 34 (1990), no. 1, 67–97. MR 1039563, DOI 10.1016/0304-4149(90)90057-Y
- E. B. Dynkin, Martin boundaries and non-negative solutions of a boundary-value problem with inclined derivative, Uspehi Mat. Nauk 19 (1964), no. 5 (119), 3–50 (Russian). MR 0168788
- J. M. Harrison, H. J. Landau, and L. A. Shepp, The stationary distribution of reflected Brownian motion in a planar region, Ann. Probab. 13 (1985), no. 3, 744–757. MR 799420
- Jean-François Le Gall, Mouvement brownien, cônes et processus stables, Probab. Theory Related Fields 76 (1987), no. 4, 587–627 (French, with English summary). MR 917681, DOI 10.1007/BF00960076
- P.-L. Lions and A.-S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. 37 (1984), no. 4, 511–537. MR 745330, DOI 10.1002/cpa.3160370408 M. B. Malyutov, Brownian motion with reflection and the inclined derivative problem, Soviet Math. Dokl. 5 (1964), 822-825.
- Gordon F. Newell, Approximate behavior of tandem queues, Lecture Notes in Economics and Mathematical Systems, vol. 171, Springer-Verlag, Berlin-New York, 1979. MR 580322
- M. I. Reiman and R. J. Williams, A boundary property of semimartingale reflecting Brownian motions, Probab. Theory Related Fields 77 (1988), no. 1, 87–97. MR 921820, DOI 10.1007/BF01848132
- L. C. G. Rogers and David Williams, Diffusions, Markov processes, and martingales. Vol. 2, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1987. Itô calculus. MR 921238
- L. C. G. Rogers, A guided tour through excursions, Bull. London Math. Soc. 21 (1989), no. 4, 305–341. MR 998631, DOI 10.1112/blms/21.4.305
- A.-S. Sznitman and S. R. S. Varadhan, A multidimensional process involving local time, Probab. Theory Relat. Fields 71 (1986), no. 4, 553–579. MR 833269, DOI 10.1007/BF00699041
- Lloyd N. Trefethen and Ruth J. Williams, Conformal mapping solution of Laplace’s equation on a polygon with oblique derivative boundary conditions, J. Comput. Appl. Math. 14 (1986), no. 1-2, 227–249. Special issue on numerical conformal mapping. MR 829041, DOI 10.1016/0377-0427(86)90141-X
- S. R. S. Varadhan and R. J. Williams, Brownian motion in a wedge with oblique reflection, Comm. Pure Appl. Math. 38 (1985), no. 4, 405–443. MR 792398, DOI 10.1002/cpa.3160380405
- R. J. Williams, Reflected Brownian motion in a wedge: semimartingale property, Z. Wahrsch. Verw. Gebiete 69 (1985), no. 2, 161–176. MR 779455, DOI 10.1007/BF02450279
- R. J. Williams, Recurrence classification and invariant measure for reflected Brownian motion in a wedge, Ann. Probab. 13 (1985), no. 3, 758–778. MR 799421
- R. J. Williams, Reflected Brownian motion with skew symmetric data in a polyhedral domain, Probab. Theory Related Fields 75 (1987), no. 4, 459–485. MR 894900, DOI 10.1007/BF00320328
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 326 (1991), 227-236
- MSC: Primary 60J65
- DOI: https://doi.org/10.1090/S0002-9947-1991-1008701-0
- MathSciNet review: 1008701