The cohomology of certain function spaces
HTML articles powered by AMS MathViewer
- by Martin Bendersky and Sam Gitler
- Trans. Amer. Math. Soc. 326 (1991), 423-440
- DOI: https://doi.org/10.1090/S0002-9947-1991-1010881-8
- PDF | Request permission
Abstract:
We study a spectral sequence converging to the cohomology of the configuration space of $n$ ordered points in a manifold. A chain complex is constructed with homology equal to the ${E_2}$ term. If the field is the rationals and the manifold is formal then the spectral sequence is shown to collapse. The results are applied to compute the Anderson spectral sequence converging to the cohomology of a function space.References
- D. W. Anderson, A generalization of the Eilenberg-Moore spectral sequence, Bull. Amer. Math. Soc. 78 (1972), 784–786. MR 310889, DOI 10.1090/S0002-9904-1972-13034-9 K. F. Bödigheimer, Stable splittings of mapping spaces, Math. Gött. Schrift. Sonderforsch. Germ. Anal., 1984.
- R. Bott and G. Segal, The cohomology of the vector fields on a manifold, Topology 16 (1977), no. 4, 285–298. MR 645730, DOI 10.1016/0040-9383(77)90036-2
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- F. R. Cohen and L. R. Taylor, Computations of Gel′fand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 657, Springer, Berlin, 1978, pp. 106–143. MR 513543
- I. M. Gel′fand and D. B. Fuks, Cohomologies of the Lie algebra of tangent vector fields of a smooth manifold, Funkcional. Anal. i Priložen. 3 (1969), no. 3, 32–52 (Russian). MR 0256411
- André Haefliger, Sur la cohomologie de l’algèbre de Lie des champs de vecteurs, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 4, 503–532 (French). MR 448367
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- Dusa McDuff, Configuration spaces of positive and negative particles, Topology 14 (1975), 91–107. MR 358766, DOI 10.1016/0040-9383(75)90038-5
- David L. Rector, Steenrod operations in the Eilenberg-Moore spectral sequence, Comment. Math. Helv. 45 (1970), 540–552. MR 278310, DOI 10.1007/BF02567352
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112 D. Sullivan, Differential forms and the topology of manifolds, Proc. Internat. Conf. on Topology & Related Topics, Univ. of Tokyo, 1973. R. Thorn, L’homologie des espaces fonctionelles, Colloq. de Topologie Algébrique, Louvain, 1956, pp. 29-39.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 326 (1991), 423-440
- MSC: Primary 55N99; Secondary 54C35, 55T99
- DOI: https://doi.org/10.1090/S0002-9947-1991-1010881-8
- MathSciNet review: 1010881