Action on Grassmannians associated with a field extension
HTML articles powered by AMS MathViewer
- by Patrick Rabau
- Trans. Amer. Math. Soc. 326 (1991), 127-155
- DOI: https://doi.org/10.1090/S0002-9947-1991-1043863-0
- PDF | Request permission
Abstract:
We examine the action of the general linear group ${\text {GL}}_L(V)$ on the set of all $K$-subspaces of $V$, where $L/K$ is a finite field extension and $V$ is a finite-dimensional vector space over $L$. The orbits are completely classified in the case of quadratic and cubic extensions; for infinite fields, the number of orbits is shown to be infinite if the degree of the extension is at least four. As an application we obtain $q$-analogues of tranformation and evaluation formulas for hypergeometric functions due to Gessel and Stanton.References
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013 W. Bailey, Generalized hypergeometric series, Cambridge Univ. Press, Cambridge, 1935.
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042 N. Bourbaki, Algèbre, Chapitres 1-3, Diffusion C.C.L.S., Paris, 1970.
- Stephen Gelbart, Ilya Piatetski-Shapiro, and Stephen Rallis, Explicit constructions of automorphic $L$-functions, Lecture Notes in Mathematics, vol. 1254, Springer-Verlag, Berlin, 1987. MR 892097, DOI 10.1007/BFb0078125
- Ira Gessel and Dennis Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal. 13 (1982), no. 2, 295–308. MR 647127, DOI 10.1137/0513021
- Dae San Kim and Patrick Rabau, Action on Grassmannians associated with commutative semisimple algebras, Trans. Amer. Math. Soc. 326 (1991), no. 1, 157–178. MR 1068929, DOI 10.1090/S0002-9947-1991-1068929-0
- Dae San Kim and Patrick Rabau, Field extensions and isotropic subspaces in symplectic geometry, Geom. Dedicata 34 (1990), no. 3, 281–293. MR 1066579, DOI 10.1007/BF00181690 P. Rabau, Enumeration in vector spaces over a field extension, Ph.D. thesis, University of Minnesota, 1988.
- Richard P. Stanley, Quotients of Peck posets, Order 1 (1984), no. 1, 29–34. MR 745587, DOI 10.1007/BF00396271
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 326 (1991), 127-155
- MSC: Primary 05E05; Secondary 05A19, 05A30, 14L30, 33D15, 33D80
- DOI: https://doi.org/10.1090/S0002-9947-1991-1043863-0
- MathSciNet review: 1043863