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REMARKS ON FORCED EQUATIONS
OF THE DOUBLE PENDULUM TYPE

GABRIELLA TARANTELLO

Abstract. Motivated by the double pendulum equation we consider Lagrang-

ian systems with potential V = V(t, q) periodic in each of the variables t,

q = (q].qN). We study periodic solutions for the corresponding equation

of motion subject to a periodic force / = f(t). If / has mean value zero,

the corresponding variational problem admits a Z symmetry which yields

N + 1 distinct periodic solutions (see [9]). Here we consider the case where the

average of /, though bounded, is no longer required to be zero. We show how

this situation becomes more delicate, and in general it is only possible to claim

no more than two periodic solutions.

Introduction

Let q, Ç eRN and ieR. Given the potential V = V(t, q), consider the

time-dependent Lagrangian

(0.1) &(q,i,t) = $A(t,q)Z-t-V(t)q)

(Here • stands for the usual scalar product in R^.) where A = A(t, q) is a

symmetric, positive definite N x N matrix.

The equation of motion for the corresponding mechanical system subject to

the forcing f = f(t) eRN is given by

(a2) TtW{q'9,t)~W{q'9,t) = f{th

Assuming A = A(t, q), V = V(t, q), and / — f(t) time-periodic with same

period T, a natural question to ask is whether or not (0.2) admits T-periodic

solutions. Obviously the answer depends upon the nature of the potential V.

Motivated by the double pendulum equation we shall consider periodic po-

tentials. More precisely, given Tk > 0, k = I, ... , N, assume

V = V(t,q) G C1  and V(t + kT, q + (kj,, ... ,kNTN)) =

V(t,q)  V(t,q) £RxRN and k,kseZ, s= 1,... , N ;

A = A(t, q) € C   is symmetric positive definite N x N matrix

(A) and A(t + kT,q + (klTl,...,kNTN)) = A(t,q)  V(t,q)eRx

RN, k,kseZ, s= 1,... ,N.
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442 gabriella tarantello

This situation has attracted the attention of several authors (e.g., [2, 3, 4, 8]) and

multiple forced oscillations have been obtained for (0.2) provided the forcing

term / = f(t) has mean value zero (i.e., J0 f(t) dt = 0 ). Here we investigate

the problem without this restriction on the mean value of /. However, our

physical intuition suggests that \j J0 f\ cannot be too large in order for (0.2)

to admit periodic solutions.

This can be seen rigorously if, for example, we consider the Lagrangian

Sf{fl, j, £t, £2) = \((mx + m2)l\i\ + 2m2/,/2cos(0 - 0)i,f2 + m2/2¿2)

+ Simi + m2)h cos^ + gtn2l2cos(¡)

(g = constant of gravitation)

corresponding to a coplanar double pendulum with masses mi and length /;.,

i=l,2. Indeed, if f(t) = (fx(t), f2(t)), then in this case (0.2) reduces to

d 2 •
-r((mx + m2)lx 6 + m2lxl2 cos(</3 - 6)4>)

(0.3)
- m2lxl2sin(4> - 6)04) + g(mx + m2)lx sinö = fx,

d • 2 •
-r(m2lxl2cos(4> - 6)6 + m2l24>)

+ m2lxl2sin(4> - 6)64> + gm2l2ùn4> = f2.

So, summing up the equations in (0.3) and integrating in [0, T] we see that

for (0.3) to admit T-periodic solutions, it is necessary that

1   fT 1   fT
T       ^X + T       f2 = S((ml +w2)/1sinT1 + m2/2smT2)

for suitable t, , t2 e [0, 2n). This condition, however, is not sufficient in

general. In fact, for example, if we take j f0 f= g(mx + m2)lx and j j0 f2 =

gm2l2 then (0.3) admits a r-periodic solution only if f(t) = g(ml+m2)li and

f2(t) = gm2l2 Vt. Thus the search of T-periodic solutions for (0.2) becomes

a delicate problem, especially when J0 / ^ 0. To the author's knowledge the

only known results in this direction are those obtained in [9] specifically for the

Ar-pendulum equations.

Here we treat the case where only one of the / components, say the first one,

has mean values zero. So we shall write f(t) = (f (t)+c, f2(t), ... , fN(t)) with

ftfk =0, k=l,...,N and ceR.
Notice that under the given assumptions the problem admits a ZN symmetry,

in the sense that if q = q(t) is a T-periodic solution for (0.2) so it is q(t) +

(kxTx, ... , kNTN) Vks e Z, s = I, ... , N. This motivates the following

Definition.  qx = qx(t) and q2 = q2(t) are called distinct if

Qx(t)-q2(t) i {(kxTx,...,knTn)VkseZ, s = \ , ... , N}

for all te[0, T].
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FORCED EQUATIONS OF THE DOUBLE PENDULUM TYPE 443

To clarify the content of our main result (Theorem 1 below) we start with

some preliminary observations. First of all we have a variational principle

associated with (0.2). Hence T-periodic solutions of (0.2) are critical points of

a suitable functional Ic defined in the Hilbert space

H={q = (ql,...,qN):qkeH1([0,T]), qk(0) = qk(T), k=l,...,N}

with Ic(q) = I0(q) + c ¿ qx for all q = (qx, ... , qN) e H.

Now, if c = 0 (i.e., /0 / = 0 ) then I0 is in fact well defined (and bounded

below) in the Hilbert manifold M = T xH# where T is the ./V-dimensional

torus and H# = {q e H : /0 q = 0}. So by the Ljusternik-Schnirelman theory

one concludes that I0 admits at least N+l (= cup length TN+l ) distinct crit-

ical points (see [7, 8] and [3, 4] for sharper results concerning the A^-pendulum

equation). This is no longer available when c^O, and in fact the behavior

of Ic, as far as critical points are concerned, can be completely different from

that of I0 even for very small c. This is illustrated by the following finite-

dimensional examples where, in analogy, we investigate the critical points for

functions of the type Gc(xx, ... , xN) = g(xx, ... , xN) + cxx with g periodic

in each variable.

Example 1. Take i// = y(t) to be a smooth 1-periodic function. Given Tk > 0,

k = 1,..., N, set

g(xx,...,xN) = w\y^T-xxk\ .

So g is Tk periodic in xk. It is easy to see that while g admits infinitely

many critical points, Gc(xx, ... , xN) = g(xx, ... , xN) + cxx has no critical

points for all c / 0.

Example 2. Take

g(xx, ... , xN) = sin*,(sinx2 - 1) • (sinx3 - 1)

N

.(sinx^ - 1) + 2      y^ sin xk

k=2

so g is 27T-periodic in xk , k = I, ... , N.

Easy computations show that g has infinitely many critical points in [0, 2n).

However Gc(xx, ... , xN) = g(xx, ... , xN) + cxN admits exactly two (nonde-

generate) critical points in [0, 2n) if \c\ < 2N~l, exactly one if \c\ = 2N~l,

and none if \c\ > 2 ~  .

These two examples justify the following.

Theorem 1. Let V = V(t, q) and A = A(t, q) satisfy (V) and (A), respec-

lively, and fk = fk(t)  be a  T-periodic continuous function with /0 fk = 0,
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444 gabriella tarantello

k = I, ... , N. There exist constants d < 0 < D (depending on V, A, and

fk) with the following property:

(i) ifd = D then for allÇeR problem (0.2) with f(t) = (fx(t),... , fN(t))
admits a   T-periodic solution   q^(t)   =   (qxi(t),...,qNi(t))   with

T Jo ai,( = <» >
(ii) if d < D then problem (0.2) with f(t) = (fx(t) + c, ... , fN(t)) admits

at least two distinct solutions if c e (d, D), and at least one solution if

c — d or c — D.   D

Remark. Restrictions on c were expected by the previous observations. Fur-

thermore, by virtue of Examples 1 and 2 we know that in general the statement

cannot be improved. However, we shall see how, in certain cases, it is possi-

ble to rule out the possibility d = 0 = D and give estimates on d and D.

This will be the content of Theorem 2 below. Here we only state its particular

implication to the double pendulum equation.

Corollary. Let e(t) = (ex(t)), e2(t)) be a continuous T-periodic function with

Jo ek = 0' k — \ ,2, and c e R. Assume

(a) (m, + m2)ll - m2l2 := y > 0 and

(b) ((mx +m2)lx/2l07i2)(\\e\\2 + VT(mx + m2)lx)T3/2 := aT < y with

(0.4)      XQ = \(m2V\ + (mx + m2)l\ - \/(m2/2 - (mx + m2)l2)2 + 4w2/f/2).

There exist constants d < 0 < D (depending on ek, mk , lk , k = 1, 2, and

T) such that equation (0.3) with fx(t) = ex(t) + c and f2(t) = e2(t) admits at

least two distinct solutions if c e (d, D) and at least one solution if c — d or

c = D. Furthermore, d<-y + aT<0<y-aT<D.   D

Similar conditions were introduced in [4] to obtain multiple forced oscil-

lations for the double pendulum equation in case c = 0. See [3], also, for

extensions to the A^-pendulum case. Furthermore, it has been observed in [9]

that pathologies of the kind portrayed by Examples 1 and 2 cannot occur for the

./V-pendulum equation, where much stronger multiplicity results hold provided

m¡, /,, e¡(t), and T satisfy suitable conditions. For the simple pendulum

equation, a result of the type of Theorem 1 was obtained by Mawhin-Willem

[7] (see also [11]).

The proof of Theorem 1 and applications. Set /(/) = (fx(t) + c, ... , fN(t)) with

fk e L [0, T], /0 fk = 0, k = I, ... , N, and c e R. We seek solutions for

the following problem

d 85?,     .    ,     35f,

(Dc

Tt^{q'q't]-Jq-{q'q't)=fx{t) + C'

-¿-t-ôç-(q , q , t) - —(q , q , t) = fk(t),     k = 2, ... , N,

q(0) = q(T),        q(0) = q(T).
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FORCED EQUATIONS OF THE DOUBLE PENDULUM TYPE 445

As it is well known from classical mechanics, (weak) solutions of (l)c are the

critical points of the functional
rj-% T-i AT rr* *y-,

Ic(q) = \l   A(t,q)q-q-f   V(t,q) + ̂ i   fkqk + cf   qx
1 Jo Jo k=x Jo Jo

defined in the Hilbert space

H={q = (qx,...,qN):qk&H\[0,T]),  qk(0) = qk(T),  k=l,...,N}

equipped with the standard scalar product

(0,0) = /  Q-Q+ Í  Q-Q,       Q,QeH,
Jo Jo

and norm \\q\\ - (q, q)     . Notice that for c # 0, Ic is unbounded in H and

multivalued in M — T   x H# .

For q = (qx,... ,qN)eH, set

1 /2

ll*ll2=(éll**lÈ>) and     Nloo=Í>Jz~-
\k=\ J k=\

Moreover, since A = A(t, q) is positive definite, let A0 > 0 satisfy A(t, q)c¡-¿¡

> A0|£|2 Vi € R, q,C € RN. For every c e R, we have that Ic satisfies a

Palais-Smale type condition. More precisely,

Lemma 1.1. Any sequence qn^H satisfying:

(i) It Jo #hI - C"i for û// « € N ( C, positive constant),
(ii) Ic(qn) < C2 for all n e N (C2 positive constant),

(iii) (l'c(qn) - l'Mm)){qn - Qm) -* 0 as n, m -+ +oo, admits a convergent

subsequence in H.

Proof. Since the potential V is bounded, set \V(t, q)\ < V0 V(t, q) e R x R^

for a suitable constant V0 > 0. Furthermore, let f0(t) = (fx(t), ... , fN(t)) and

9n = í + í, with Í- = «!.«• •" > W6*" and /0ri° = 0. We have

C2>Ic(qn) = \jQ   A(t,qn)qn-qn-^   V(t,qn

çT çT

/ fo-q„ + c    ii
Jo Jo

+

>^IWJÊ-ll/oyi«îll2-(^o + W)r

>  ̂ 0||¿   II2 _ ZMlll||¿   Il     _ (T/    ,   |C|C  )T
2      " 2u "   2 °      '   '    ''     '

This yields ||<7„||2 < c, V« e N for some suitable constant c¡ > 0. This fact,

together with (i) implies that for a subsequence of qn (which we still call qn )

and q G H we have \\qn - qW^ —> 0 as « —> +00 . Set

A»{t) = {dq~^'(inK-qn'---'9^(t^nK-(in)eR •
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446 GABRIELLA TARANTELLO

Obviously,
N

E
k=l

dA,       . .     .
W(t,qn)qn.qn <c2   Vn 6 N

for c2 > 0 suitable constant.   Furthermore, by the Lipschitz continuity of

A - A(t, q) in q (uniformly in t ) we have

fT
(fM - ¡Mm^n ~am)= A((> <?„)(<?„ - ^m) ' W„ " <U

JO

+

+

)-^(*,iJ)i*-w,,-4m)[T(A(t,qn
Jo

[T(An(t)-Am(t)).(qn-qJ
Jo

fT(dV.       ,     OF,        A    .

/0 ^'0-^.0;-(«.-«J
^ ¿oK - 4W||2 - c3\\qn - qj^    (c3 positive constant)

mll2 0 as n, m —> +oo, and therefore #   —> <? inConsequently,   ||#n - q

H.    D

Given t\ e R set A{ = {? = (g,, ... , 4^) e 77 : j= J^ = £}. For every

ceR, 7c is bounded from below in A^ . Furthermore,

Lemma 1.2. For every Ç e R, there exists q* e A« swc/í íAaí

(1.1){ í0(íí)=inf/0.

Moreover, Inf^ 7C = 70(^) + cri = 7C (^).

Prao/. Set m,, = infA 70 and let qn = (qx „,..., qNn) € A{ such that

(1.2) nlimo70(í„) = mí.

Since 70(<?) = 70(i? + (kx Tx, ... , knTn)) for all ks € Z, 5 = 1, ... , TV, we can

always assume that j J0 qk n e [0, Tk], k - 2, ... , N. So

:i.3) ïlo*"<\t\ + ZTk
k=2

Furthermore from (1.2) it follows that  \\qn\\L2 < C   Vn e N, for a suitable

positive constant C. Hence for a subsequence {qn } of {^} and q0 e 77 we

have qn  —► <?0 weakly in L   and i?n  -> <70 strongly in L .

Consequently q0 € A^ . The lower semicontinuity of 70 yields the conclu-

sion.    D

Our next goal is to obtain a priori estimates on q( independent of c¡. To

this purpose let L be the Lipschitz constant of V, i.e.,

1.4) \V(t,q)-V(t,Q)\<L\q-Q\

for all teR, q,QeRN. Set fJt) = (f(t),..., Ut)). We have
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FORCED EQUATIONS OF THE DOUBLE PENDULUM TYPE 447

Lemma 1.3. If q( e A^ satisfies (1.1). then

71/.
:-L(\\f0\\2 + VTL).

Proof. Set q( = q^+(¿¡ ,o2, ... ,o~N) with /0r q° = 0. Since TV(t¡ ,a2,...,aN)

= 70(£, <T2, ..., aN) > I0(q(), we have

i rT

-j  (V(q¡ + (t;,o2,...,oN))-V(c:,o2,...,oN)) + j^  fQ-q¡

^  ^0 ii ■  h2       T   n^n   0,,        m r ,,   ,.   O,,
^^ll^l^-LVrii^ii.-ii/oiyi^i^.

Thus

0 > l^lli (^lla-^dl/ollj + LVf)).   □

For £ 6 R set Ti = {q e A^ : I0(q) = infA 70} . By Lemma 1.2 we know that

r{ ¿ 0 for all i g R.

Lemma 1.4. For every c e R, there exists Lc > 0 such that

\JMt + CTi) - 7c(^2 + ai)\ z Lc(ll^, - «ijl + \a\ - ai\)

for all er eRN, £,. e R, ^ G r{ , z = 1,2.

Proof. Let L' be the (uniform) Lipshitz constant corresponding to A(t,q)

and let AQ satisfy \A(t, q)£ ■ n\ < A0\¿¡\ \n\ for all t e R, #, í, // € RN . Set

q* = q* +0;, i = 1,2. We have

i
*2, ^ ^(í.í^.^-^í,^)^-^!

+ [T\V(t,q()-V(t,q  )\+ [T\f0.(q°( -q°)\
Jo ' 2       jo '        2

+ r|c|(|í1-í2| + |ff1-ff2|)

i y7'

+ j /    W' Â{2)^2 • («í, - <?f2)l + L^ll^, - q(2h
J u

+ ^u/oiy^, - <y 2+i«tc - {2i + la, - ff2D

< yii?í, - í{íiiooii4f, ni+■fiiic, lyi^í, - iÍ2ii2+f ii^y««, - <y2

+ vT(L + |c|)||^ - ?Í2||2 + ¿H/oUlií, - ?Í2II2 + T(\c\ + L)\ax - a2\
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448 GABRIELLA TARANTELLO

Hence by the estimate of Lemma 1.3 we conclude that

W -/e(«5,)l s y (^(ll/oll2 + ̂ ^)) illfl«, - %\L + l*i - CT2l)

+ (^^(ll/oll2 + vT7) + ¿||/0||2)||^-^||2

+ >/7(L + |c|)(||?ii - flÍ2||2 + VT\ox - ff2|)

<^c(lkCl-9Í2ll + ki-^l)

for some suitable constant Lc > 0 independent of £; and a¡, i = 1, 2.   G

Proof of Theorem 1. Given q £ H, define

\  (\   fT 8A,      ,.    .      7raK.      A

Set o* = infieRinf en ^(0) and D = supi6Rsup gr ^(0). By Lemma 1.3 we

know that -00 < d < D < +00. Furthermore, 70 is bounded from below in

77, and by Lemma 1.1 it follows that its minimum is achieved at some point

q0 G 77. In particular ^(<70) = 0. So d < y/(q0) = 0 < D. Notice that

V^eR and q( G T{ we have 7^) = -T(y/(qs) ,0, ... ,0) eRN . Therefore

if d = D = 0, then for every ^ eR, qi &Y(   (# 0) would be a solution for

(l)c=0 and j j0Tqx ( = £,. Now assume d < D, and let c G (d, D). There

exists ¿j,, <j;2 G R such that ^(^ ) < c < y/(qs ) for all q( G T^ and for all

qÍ2 G rÍ2. Since w(Qi+kTí) = v(qt) and q( G r, «*• 0{+fc7. G r{+Jt7. for all

k eZ,we can always assume 0 < £,2 - ¿¡x < Tx . Set

AiÍ2 = ¡q = (qx,...,qN)eH:íx<^^   qx<^2\ .

Notice that I is bounded from below in A, , , We shall obtain our first

solution by showing that inf.       7. is achieved at an interior point of A,   . .
"i, ,{2    c íi 't:

Set  m = infA      7      Let qn = (a,      ... , 0^   ) G A«   «    n G N, satisfy

limn_+oo Ic(qn) = m . If £„ = ". /0r 0, „ G K,, í2], without loss of generality

we can assume qn = q^ e T^ and limn_+ooc;n = £0 with £, < £0 < £2. In

addition, given qf gT, , by Lemma 1.4 we have

m = inf 7C < 7c(ff« ) < 7C(0, + (¿0 - {„, 0,..., 0))

= 7c(ffin + (io - £„, 0, ... , 0)) - Ic(qin ) + Ic(q(n )

<Lc\$0-Çn\ + Ic(qsJ^>m   as «-++00.

Therefore Ic(qi ) = m . We are done if we show ¿jt < ¿;0 < t\2. To this purpose
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set &[{s) = 7C(0{ + (s, 0, ... , 0)). We have

^x^ = \So Wx^q^rk-f/wi{uq0+cT
= -T(iff(q()-c)<0.

Similarly, if <p2(s) = Ic(q( +(s, 0, ... ,0)) then tp'2(0) = -T{y(q( )-c)>0.

So for small e > 0, Ic(q(J < Ic(q(¡ + (e, 0, ... , 0)) < Ic(q() and 7^) <

¡Á\ - (e, 0, ... , 0)) < 7C(0Í2). Consequently £0 ^ £, and £0 ^ £2, which

yields 7^(0* ) = 0. So q, is a solution for (l)c. Moreover, q, is a local mini-

mum for Ic, so we shall obtain a second solution via a mountain-pass theorem

(see [1]). To this purpose notice that 7C(0) = 7c(0 + (0, k2T2, ... , kNTN)) for

all kseZ, s = 2, ... , N.
Consider

I = {y : [0 ; 1] —► 77 continuous : y(0) = q^ ,

y(l) = qio + (0,k2T2,..., kNTN) ; ks G Z}

and set a = inf,,eI supi£[0 ,, Ic(y(t)) > 7c(0i ). Although Ic does not satisfy the

Palais-Smale condition in the usual sense, Lemma 1.1 is enough to guarantee a

"deformation lemma". It can be obtained by adjusting the standard proof of

the deformation theorem as shown in [8, Proposition 1.10], with the further

simplification that condition 2 of Proposition 1.10 is not needed here. Thus

a sharper version of the mountain-pass theorem due to D. Guo, J. Sun, and

G. Qi (see [5, Proposition 2]) gives that a is a critical value for Ic, and that

Ka := {q G 77 : 7C(0) = a, l'c(q) = 0} contains a critical point different from

0i +(kxTx, k2T2, ... , kNTN) for all ks e Z, s = 1, ... , N. (This generalizes

previous results of Hofer [6].) So we are guaranteed a second distinct solution

for (l)c.

Finally, if c = d or c = D, take a sequence {cn} c (d, D) such that cn -» d

(or cn —> D ) as n —* +00 . By previous arguments, for every n e N there exists

qn = («1,«» ••• ' <5V,«) £fI suchthat

(a)  T So 9k „&[0,Tk] for all n e N and for all k = 1, ... , N;

(b) UU2<'é(ll/oll2 + ̂ );

(c) 0 = l'Cn(qn) = l'd(qn) + cn-d.

Therefore \(l'd(q„)-l'd(qm)){q„-qj\ = \c„-cm\ ||tf„-ffj| -► 0 as n, m ^+00,

since (a) and (b) => \\qn - qm\\ < C for all n, m G N ( C > 0 constant). Hence

as for Lemma 1.1 we obtain a subsequence {qn } of {qn} and q e H : qn —* q

in 77. Obviously l'd(q) = 0. Completely analogous is the case cn —> D.   D

Our next goal is to find conditions on the matrix A = A(t, q) and V -

V(t, q) which exclude the possibility d = 0 = D. To this end let V = V(t, q)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



450 GABRIELLA TARANTELLO

have the special form

(1.5) V(t,q) = g(qx) + Vx(t,q)

where

iV)i

Set g'm = minR g < 0 < maxR g =g'M,

geC  is Tx periodic and Vx satisfies (V)

Jï      ni/ N      r, -ir

Vm = minY |li <m3LXy^Ll = VM

k=\R„+, ̂  dqk+' K a**

and y = min{-^ - VM, g'M + Vm) . Furthermore, let A, > 0 satisfy

££W <^r

We have

Theorem 2. Lei A = A(t, q), fk = fk(t), k = 1, ... , N, as in Theorem 1, and

V = V(t, q) of the form (1.5) satisfy (V)x. Assume y > 0 0«ß?

1.6)       ^r := -^(ll/oll, + VTL) (£-(||/0||2 + VfL) + Ly/T) < y

where L and I are the Lipshitz constants of V and g respectively. There

exists constants d < 0 < D such that if c G (d, D) then problem (l)c admits

at least two distinct solutions; and if c = d or c = D then (l)c admits at least

one solution. Furthermore; d < g'm + VM + pT < 0 < g'M + Vm - pT.

Proof. First of all, notice that for all £ G R and i{ e T{, J0r |^-(i, qi)qi ■ q& -

§£(t, 0{) = 0 for all k = 2,... , N. Let £0 G [0, Tx] with g%) = g'm . We

have

dVx
'T¥{\) = Jo   (oVi(t ' q^ ' ̂  - ^'(^> .0 - ï

= y0 E ^-c> «íA • *ío - y0 (s'(«¡U+fo) - *'«?<>))

»7"     A1       ny

> - 7V - 7^+*, /       tó{Jo     io

2   /r3'2,,.

2tt   """.«o1*
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So, by the estimate of Lemma 1.3 we conclude

-Tyt(q. ) > -T
»0

¿ + ^ + TjJ-sdl/olla + VfL)2 + ^-2 (ll/0ll2 + VfL)

> -T Sm + VM + -L-(||/0||2 + VfL) {^(\\f0\\2 + VfL) + Lvfj

>0.

That is, d < i//(qi ) < g'm + VM + pT < 0. Similarly, if we let <*, G [0, Tx] such

that g'(il) = g'M, we have

*>(*,) = - jf g ̂ ' %)%'k+l0T^U +^ = *'«i»
/* 7 s\\f

¿r + p„r- ^(ll/olb + vT¿) (^(ll/olk + *^> + ̂ 0 > °-
„2

>
^0^ \A0

This yields D>^ + Fm-^7.>0. The conclusion now easily follows from

Theorem 1.   G

APPLICATION TO THE  jV-PENDULUM EQUATION

Given m¡ > 0, /,- > 0, i = 1,..., N, set M¡ = J^=i m¡ ■  Theorem 2

applies to the Lagrangian

1 -
(1.7) &(<1,Z)= 2A(Q)t-Z + gY,lkMkc™<lk

k=\

where A(.l) = {aitj(Q)}itj=ltmtN and

(1.8) a,./?) = 0,-/0, ,...,qN) = M^^lj cos(0, - q¡)

which corresponds to the mechanical system of A-coplanar penduli with masses

mi and length /,., i = I, ... , N. We obtain

Corollary 1. Let f0(t) = (fx(t), ... , fN(t)) G R    as in Theorem 1. Assume

(1.9) Mlll-jrMklk = y>0
fe=2

and

(1.10) ^^l(\\Q2 + VfMxlx)<y
ZAqTI

where XQ is the elliptic constant of the matrix A = A(q) given in (1.8). There ex-

ist constants d < 0 < D (depending on m,, /,, f¡, i = 1, ... , N and T ) such
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that problem (l)c with Sf given in (1.7) admits at least two distinct solutions

if c G (d, D) and at least one solution if c = d or c = D. Furthermore,

d<-y+    '■   2   (||/0||2 + VfMxlx) < 0

<y-^-^(\\f0\\2 + VfMxlx)<D.
¿AqK

Proof. Just notice that in this case L = l = M.l and ¿2k=l ̂ ^Ç, • £ = 0 for

all q, Ç G RA ; so we can take L = 0.   D

Finally, concerning the corollary as stated in the Introduction, notice that it

is exactly Corollary 1 with N = 2, where X0 has been explicitly computed and

given by (0.4).
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