A measure of smoothness related to the Laplacian
HTML articles powered by AMS MathViewer
- by Z. Ditzian
- Trans. Amer. Math. Soc. 326 (1991), 407-422
- DOI: https://doi.org/10.1090/S0002-9947-1991-1068926-5
- PDF | Request permission
Abstract:
A $K$-functional on $f \in C ({R^d})$ given by \[ \tilde K (f,{t^2})= \inf (||f - g|| + {t^2}||\Delta g||;g \in {C^2} ({R^d}))\] will be shown to be equivalent to the modulus of smoothness \[ \tilde w (f,t)= \sup \limits _{0 < h \leq t} \left \| {2 df(x) - \sum \limits _{i = 1}^d {[f(x + h{e_i}) + f(x - h{e_i})]} } \right \|.\] The situation for other Banach spaces of functions on ${R^d}$ will also be resolved.References
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- Z. Ditzian, Moduli of continuity in $\textbf {R}^{n}$ and $D\subset \textbf {R}^{n}$, Trans. Amer. Math. Soc. 282 (1984), no. 2, 611–623. MR 732110, DOI 10.1090/S0002-9947-1984-0732110-9
- Z. Ditzian, The Laplacian and the discrete Laplacian, Compositio Math. 69 (1989), no. 1, 111–120. MR 986815
- Robert Sharpley and Yong-sun Shim, Singular integrals on $C^\alpha _p$, Studia Math. 92 (1989), no. 3, 285–293. MR 985558, DOI 10.4064/sm-92-3-285-293
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 326 (1991), 407-422
- MSC: Primary 41A25
- DOI: https://doi.org/10.1090/S0002-9947-1991-1068926-5
- MathSciNet review: 1068926