Towards a functional calculus for subnormal tuples: the minimal normal extension
HTML articles powered by AMS MathViewer
- by John B. Conway
- Trans. Amer. Math. Soc. 326 (1991), 543-567
- DOI: https://doi.org/10.1090/S0002-9947-1991-1005077-X
- PDF | Request permission
Abstract:
In this paper the study of a functional calculus for subnormal $n$-tuples is initiated and the minimal normal extension problem for this functional calculus is explored. This problem is shown to be equivalent to a mean approximation problem in several complex variables which is solved. An analogous uniform approximation problem is also explored. In addition these general results are applied together with The Area and the The Coarea Formula from Geometric Measure Theory to operators on Bergman spaces and to the tensor product of two subnormal operators. The minimal normal extension of the tensor product of the Bergman shift with itself is completely determined.References
- M. B. Abrahamse and Thomas L. Kriete, The spectral multiplicity of a multiplication operator, Indiana Univ. Math. J. 22 (1972/73), 845–857. MR 320797, DOI 10.1512/iumj.1973.22.22072
- William Arveson, An invitation to $C^*$-algebras, Graduate Texts in Mathematics, No. 39, Springer-Verlag, New York-Heidelberg, 1976. MR 0512360
- Ameer Athavale, Holomorphic kernels and commuting operators, Trans. Amer. Math. Soc. 304 (1987), no. 1, 101–110. MR 906808, DOI 10.1090/S0002-9947-1987-0906808-6
- Errett Bishop, A generalization of the Stone-Weierstrass theorem, Pacific J. Math. 11 (1961), 777–783. MR 133676 N. Bourbaki, Éléments de mathématique, Livre VI, Intégration, Chapter 6, Intégration vectorielle, Hermann, Paris, 1959.
- Jacques Chaumat, Adhérence faible étoile d’algèbres de fractions rationnelles, Publications Mathématiques d’Orsay, No. 147 75-40, Université Paris XI, U.E.R. Mathématique, Orsay, 1975 (French). MR 0442692
- John B. Conway, Subnormal operators, Research Notes in Mathematics, vol. 51, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981. MR 634507
- John B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR 768926, DOI 10.1007/978-1-4757-3828-5
- John B. Conway, The minimal normal extension of a function of a subnormal operator, Analysis at Urbana, Vol. II (Urbana, IL, 1986–1987) London Math. Soc. Lecture Note Ser., vol. 138, Cambridge Univ. Press, Cambridge, 1989, pp. 128–140. MR 1009188
- John B. Conway, Towards a functional calculus for subnormal tuples: the minimal normal extension and approximation in several complex variables, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 105–112. MR 1077381, DOI 10.1090/pspum/051.1/1077381
- John B. Conway and Robert F. Olin, A functional calculus for subnormal operators. II, Mem. Amer. Math. Soc. 10 (1977), no. 184, vii+61. MR 435913, DOI 10.1090/memo/0184
- Raúl E. Curto, Applications of several complex variables to multiparameter spectral theory, Surveys of some recent results in operator theory, Vol. II, Pitman Res. Notes Math. Ser., vol. 192, Longman Sci. Tech., Harlow, 1988, pp. 25–90. MR 976843
- Raul E. Curto, Spectral inclusion for doubly commuting subnormal $n$-tuples, Proc. Amer. Math. Soc. 83 (1981), no. 4, 730–734. MR 630045, DOI 10.1090/S0002-9939-1981-0630045-6
- James Dudziak, Spectral mapping theorems for subnormal operators, J. Funct. Anal. 56 (1984), no. 3, 360–387. MR 743847, DOI 10.1016/0022-1236(84)90083-1
- James Dudziak, The minimal normal extension problem for subnormal operators, J. Funct. Anal. 65 (1986), no. 3, 314–338. MR 826430, DOI 10.1016/0022-1236(86)90022-4
- James Dudziak, A weak-star rational approximation problem connected with subnormal operators, Proc. Amer. Math. Soc. 107 (1989), no. 3, 679–686. MR 1017226, DOI 10.1090/S0002-9939-1989-1017226-4
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- T. W. Gamelin, P. Russo, and J. E. Thomson, A Stone-Weierstrass theorem for weak-star approximation by rational functions, J. Funct. Anal. 87 (1989), no. 1, 170–176. MR 1025885, DOI 10.1016/0022-1236(89)90006-2
- Irving Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 105 (1962), 415–435. MR 173957, DOI 10.1090/S0002-9947-1962-0173957-5
- Takasi Itô, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ. Ser. I 14 (1958), 1–15. MR 0107177
- Steven G. Krantz, Function theory of several complex variables, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. MR 635928
- Arthur Lubin, Weighted shifts and products of subnormal operators, Indiana Univ. Math. J. 26 (1977), no. 5, 839–845. MR 448139, DOI 10.1512/iumj.1977.26.26067
- Frank Morgan, Geometric measure theory, Academic Press, Inc., Boston, MA, 1988. A beginner’s guide. MR 933756
- Robert F. Olin, Functional relationships between a subnormal operator and its minimal normal extension, Pacific J. Math. 63 (1976), no. 1, 221–229. MR 420324
- Mihai Putinar, Spectral inclusion for subnormal $n$-tuples, Proc. Amer. Math. Soc. 90 (1984), no. 3, 405–406. MR 728357, DOI 10.1090/S0002-9939-1984-0728357-3
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841 —, Function theory in the ball of ${\mathbb {C}^n}$, Springer-Verlag, New York, 1980.
- Rita Saerens, Interpolation theory in $\textbf {C}^n$: a survey, Complex analysis (University Park, Pa., 1986) Lecture Notes in Math., vol. 1268, Springer, Berlin, 1987, pp. 158–188. MR 907059, DOI 10.1007/BFb0097302
- Donald Sarason, Weak-star density of polynomials, J. Reine Angew. Math. 252 (1972), 1–15. MR 295088, DOI 10.1515/crll.1972.252.1
- Joseph L. Taylor, The analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1–38. MR 271741, DOI 10.1007/BF02392329 K. Yan, Invariant subspaces for joint subnormal systems (preprint).
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 326 (1991), 543-567
- MSC: Primary 47B20; Secondary 32E30, 47A20, 47A60
- DOI: https://doi.org/10.1090/S0002-9947-1991-1005077-X
- MathSciNet review: 1005077