Lie flows of codimension $3$
Authors:
E. Gallego and A. Reventós
Journal:
Trans. Amer. Math. Soc. 326 (1991), 529-541
MSC:
Primary 53C12; Secondary 57R30
DOI:
https://doi.org/10.1090/S0002-9947-1991-1005934-4
MathSciNet review:
1005934
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We study the following realization problem: given a Lie algebra of dimension $3$ and an integer $q,0 \leq q \leq 3$, is there a compact manifold endowed with a Lie flow transversely modeled on $\mathcal {G}$ and with structural Lie algebra of dimension $q$? We give here a quite complete answer to this problem but some questions remain still open $({\text {cf.}}\;\S 2$.
-
Y. Carrière, Journées sur les structures transverses. Toulouse 1982, Asterisque 116 (1984).
A. ElKacimi and M. Nicolau, Espaces homogènes moyennables et feuilletages de Lie, Publ. IRMA 12, Lille, 1988.
- Edmond Fedida, Sur les feuilletages de Lie, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A999–A1001 (French). MR 285025 C. Godbillon, Feuilletages, Institut de la Recherche Mathematique Avancée, Université Louis Pasteur, Strasbourg. M. Llabrés and A. Reventós, Unimodular Lie foliations, Ann. Fac. Sci. Toulouse Math. IV (5) (1988).
- Pierre Molino, Géométrie globale des feuilletages riemanniens, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), no. 1, 45–76 (French). MR 653455
Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C12, 57R30
Retrieve articles in all journals with MSC: 53C12, 57R30
Additional Information
Article copyright:
© Copyright 1991
American Mathematical Society