Vanishing of $H^ 2_ w(M,K(H))$ for certain finite von Neumann algebras
HTML articles powered by AMS MathViewer
- by Florin Rădulescu
- Trans. Amer. Math. Soc. 326 (1991), 569-584
- DOI: https://doi.org/10.1090/S0002-9947-1991-1031241-X
- PDF | Request permission
Abstract:
We prove the vanishing of the second Hochschild cohomology group $H_w^2 (M,K(H))$, whenever $M \subset B(H)$ is a finite countably decomposable von Neumann algebra not containing a non $\Gamma$-factor or a factor without Cartan subalgebra as a direct summand. Here $H$ is a Hubert space, and $K(H)$ the compact operators.References
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324. MR 458196, DOI 10.2307/1970999
- A. Connes, Classification des facteurs, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 43–109 (French). MR 679497
- Erik Christensen, Derivations and their relation to perturbations of operator algebras, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 261–273. MR 679509
- Erik Christensen, Similarities of $\textrm {II}_1$ factors with property $\Gamma$, J. Operator Theory 15 (1986), no. 2, 281–288. MR 833212
- Erik Christensen, Edward G. Effros, and Allan Sinclair, Completely bounded multilinear maps and $C^\ast$-algebraic cohomology, Invent. Math. 90 (1987), no. 2, 279–296. MR 910202, DOI 10.1007/BF01388706 E. Christensen and A. Sinclair, On the Hochschild cohomology for von Neumann algebras, preprint, 1988.
- John B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR 768926, DOI 10.1007/978-1-4757-3828-5
- U. Haagerup, All nuclear $C^{\ast }$-algebras are amenable, Invent. Math. 74 (1983), no. 2, 305–319. MR 723220, DOI 10.1007/BF01394319
- B. E. Johnson, Low-dimensional cohomology of Banach algebras, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 253–259. MR 679508
- B. E. Johnson and S. K. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Functional Analysis 11 (1972), 39–61. MR 0341119, DOI 10.1016/0022-1236(72)90078-x
- Sorin Popa, Notes on Cartan subalgebras in type $\textrm {II}_1$ factors, Math. Scand. 57 (1985), no. 1, 171–188. MR 815434, DOI 10.7146/math.scand.a-12110
- Sorin Popa, The commutant modulo the set of compact operators of a von Neumann algebra, J. Funct. Anal. 71 (1987), no. 2, 393–408. MR 880987, DOI 10.1016/0022-1236(87)90011-5 S. Popa and F. Rădulescu, Derivations into the compact ideal space of a semifinite von Neumann algebra, 57 (1988).
- J. R. Ringrose, Cohomology theory for operator algebras, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, RI, 1982, pp. 229–252. MR 679507, DOI 10.1090/pspum/038.2/679507
- Şerban Strătilă and László Zsidó, Lectures on von Neumann algebras, Editura Academiei, Bucharest; Abacus Press, Tunbridge Wells, 1979. Revision of the 1975 original; Translated from the Romanian by Silviu Teleman. MR 526399
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 326 (1991), 569-584
- MSC: Primary 46L10; Secondary 46M20
- DOI: https://doi.org/10.1090/S0002-9947-1991-1031241-X
- MathSciNet review: 1031241