Linear series with an $N$-fold point on a general curve
HTML articles powered by AMS MathViewer
- by David Schubert
- Trans. Amer. Math. Soc. 327 (1991), 117-124
- DOI: https://doi.org/10.1090/S0002-9947-1991-1005937-X
- PDF | Request permission
Abstract:
A linear series $(V,\mathcal {L})$ on a curve $X$ has an $N$-fold point along a divisor $D$ of degree $N$ if $\dim (V \cap {H^0}\;(X,\mathcal {L} (- D))) \geq \dim \;V - 1$. The dimensions of the families of linear series with an $N$-fold point are determined for general curves.References
- E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, Geometry of algebraic curves, Vol. 1, Springer, New York, 1984.
- Marc Coppens, A remark on the embedding theorem for general smooth curves, J. Reine Angew. Math. 374 (1987), 61–71. MR 876221, DOI 10.1515/crll.1987.374.61
- D. Eisenbud and J. Harris, Divisors on general curves and cuspidal rational curves, Invent. Math. 74 (1983), no. 3, 371–418. MR 724011, DOI 10.1007/BF01394242
- David Eisenbud and Joe Harris, Limit linear series: basic theory, Invent. Math. 85 (1986), no. 2, 337–371. MR 846932, DOI 10.1007/BF01389094
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953, DOI 10.7146/math.scand.a-12001
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953, DOI 10.7146/math.scand.a-12001
- David Schubert, Linear series with cusps and $n$-fold points, Trans. Amer. Math. Soc. 304 (1987), no. 2, 689–703. MR 911090, DOI 10.1090/S0002-9947-1987-0911090-X
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 327 (1991), 117-124
- MSC: Primary 14H10; Secondary 14C20
- DOI: https://doi.org/10.1090/S0002-9947-1991-1005937-X
- MathSciNet review: 1005937