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^-TENSOR SPACE AND q-WEYL MODULES

RICHARD DIPPER AND GORDON JAMES

Abstract. We obtain the irreducible representations of the g-Schur algebra,

motivated by the fact that these representations give all the irreducible rep-

resentations of GLn(q) in the nondescribing characteristic. The irreducible

polynomial representations of the general linear groups in the describing char-

acteristic are a special case of this construction.

The theory of polynomial representations of general linear groups is equiv-

alent to the representation theory of Schur algebras (see Green's book [5] and

the bibliography therein). In [4], we defined ^-analogues of Schur algebras.

When q = 1, these are the usual Schur algebras, and when q is a prime power,

representations of ^-Schur algebras give a substantial part of the representa-

tion theory of finite general linear groups in the nondescribing characteristic

case, including all irreducible representations of these groups and important

information about decomposition numbers.

It is natural to ask what features of the classical Schur algebras have q-

analogues. In this paper, we define ^-analogues of tensor space, of Weyl mod-

ules, and of weight spaces, thereby generalizing the main results which appear

in Green's book [5]. For example, we classify the irreducible modules for q-

Schur algebras, we determine bases for #-Weyl modules compatible with weight

spaces, and we give results on composition multiplicities of the irreducible mod-

ules in <7-Weyl modules. The proofs are largely self-contained, so by specializing

q to 1, we recover the corresponding results in [5]. This paper, therefore, is

relevant to the representation theory of symmetric groups and to the represen-

tation theory of general linear groups in the describing and in the nondescribing

characteristics.

1. The <7-Schur algebra

Let r be a natural number, let R be an integral domain, and let q be a unit

in R. We denote the symmetric group on r letters by &r. The Hecke algebra

ß? is the R-free /?-algebra with basis {Tw\w £ &r}, where the multiplication

is determined by the following rule. If a - (i, i+ 1) is a basic transposition in
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&r and w £<5r then

T T ={Twa if l(wa) >l(w),

W "     \aTwa + (a-l)Tw   otherwise.

Here, l(u) is the length of u e 6r.

We shall be concerned with certain ideals of ß? which are indexed by com-

positions. A composition X = (Xx, X2, ... , Xn) of r (written X\= r) is a finite

sequence of nonnegative integers whose sum is r. If the sequence X is nonin-

creasing then we call X a partition of r and write X \- r. If X = (Xx, X2, ... ) f= r

then we define X' = (X\, X'2, ...) by setting X\ equal to the cardinality of

{Xj\Xj > i} . Note that X' is a partition of r ; it is called the partition conjugate

to X. For X and p compositions of r, we say that X and p are associated if

X' = p ; that is, if p can be derived from X by reordering the parts of X.

If X = (Xx, X2, ... ) is a composition of r, then the corresponding standard

Young subgroup &x of 6r consists of those permutations of {1, 2, ... , r}

which leave invariant the following sets of integers: {1, 2, ... , Xx}, {Xx +

I, Xx + 2, ... , Xx + X2}, {Xx + X2 + 1,...},... . Let X and p be composi-

tions of r. In each coset of &x in &r, there is a unique element of minimal

length, the distinguished coset representative. The set of distinguished coset

representatives for right cosets &xw is denoted by 3X. (Our convention for

composing permutations u and v is that uv denotes u followed by v.) The

set of distinguished left coset representatives is 3XX and 3X r\3~x is the set

of distinguished &x - 6   double coset representatives. Let 3X  - 3X r\3~x.

We shall consider the right ideals xxß? of ß?, where xx = Y,wee Tw . The

following holds.

(1.1) If X' = p then d~x6xd = 6^ for some d £ 3Xf¡. Hence xxTd - Tdx^

and the right ideals xxß? and x ß? are isomorphic.

We are going to define the #-Schur algebra to be the endomorphism algebra

of an external direct sum of right ideals xxß?. Whether we take the direct

sum to be over all partitions X of r or over compositions X of r usually

makes little difference, in view of result (1.1). However, it is convenient to

deal with restricted compositions. We therefore define A(n, r) to be the set

of compositions X = (Xx, X2, ... , Xn) of r into n parts (each part Xi being

nonnegative).

1.2. Definition. Let SR(n, r) = End^(^X€A(nr)xxß?). We call SR(n, r) the

q-Schur algebra.

When q = 1, ß? is isomorphic to 6r, so SR(n, r) is the usual Schur

algebra, as defined in Green's book [5]. Note that when n> r, every partition

of r is in A(« , r), so by remark (1.1), we have

1.3. Lemma. If n>r then the q-Schur algebra SR(n, r) is Morita equivalent

to End^e^VH-
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In [4], we took the #-Schur algebra to be defined in terms of partitions, and

Lemma 1.3 enables us to translate the results in this paper directly into the

alternative version of the tf-Schur algebra.

If X and p are compositions of r and d £ &r then we obtain an ele-

ment <pdXß of Horn^X, xxß?) by defining 4>dXtl(xßh) = E^e^e, Twh for

h £ ß?. Since the <?-Schur algebra is a direct sum of spaces of the form

Hom^(x ß?, xxß?), these homomorphisms <px   give us elements of the q-

Schur algebra, by extending (p.   in the natural way, and we denote this element

of the g-Schur algebra also by <px . The following straightforward result was

proved in [2, 3.4].

1.4. Theorem. The q-Schur algebra SR(n, r) is free as an R-module, with basis

{4>dXß\X,p£A(n,r), d£3Xii).

In the case where q = 1, our basis element <px coincides with a certain term

£y which is described in [5, §2.3]. Although it is possible to give a concise

formula for the product of two basis elements when q = 1 [5, (2.3b)] the

product when q is arbitrary seems to be extremely unpleasant. Before saying

more about the product, we shall construct an antiautomorphism of the g-Schur

algebra. This will turn up as a special case of the following general construction.

For the moment, let ß? be an arbitrary R-ùee /î-algebra and suppose that

we have an antiautomorphism h i-> h* of ß? which satisfies h** = h for all h £

ß?. Let M be a finite-dimensional right ß?-la\X\ce. Define the contravariant

dual right ß?-la\\\e M* in the usual way: M* — HomR(M, R), where ß? acts

by (fh)m = f(mh*) for f £ M*, h £ ß?, and m £ M. Let Endx(Af) be
the ring of ^-endomorphisms of M, acting on the left. For s £ End^-(Af),

define 5 £ Endx(M*) by the rule s f — f o s for f £ M*. Then íhí

is an anti-isomorphism from End^(M) to End%,(M*). (With respect to the

dual basis of M and M*, s >-+ s   corresponds to transposing matrices.)

Now assume that M is self-dual. Thus, there exists an ^-isomorphism

6 from M to M*, and this induces an isomorphism 6 from End^(M) to

End^.(M*). Applying first * and then 6~x we get an antiautomorphism * of

Endjp(M). Thus, we have

s*(m) = 6   s (m) = 6   s 6(m)

= 6   (6(m) o s)   for all 5 £ Fnd^(M) and m e M.

Of course, 6(m)n = (m, n) gives a well-known correspondence between the

set of ^-isomorphisms 6 from M to M* and the set of nondegenerate bilin-

ear forms ( , ) on M which have the property that (mh, n) = (m, nh*) for

all m, n £ M and h £ ß?. In this situation, we have (s*m, n) = 6(s*m)n =

(d(6~xs*0m))n = s#(6m)n - (dm)(sn) = (m, sn). Thus, we have

(1.6)        (s*m, n) = (m, sn)   for all s £ End^(M) and m, n £ M.
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We note that this implies that not only is M self-dual as a right ^-module

(by hypothesis), but M is also self-dual as a left End^(A/)-module.

Now let ß? again be the Hecke algebra, and let M = ©A6A(„ r) xxß?. For

X £ A(n ,r),we define a (symmetric) bilinear form ( , )x on xxß? by setting

(L7) <*a7..*a7.>i-|0       otherwise

for w, D 6 ü^.  We extend these bilinear forms to a nondegenerate bilinear

form ( , ) on M, by specifying that xxß? and jc„ ̂ are orthogonal if X^ p .

It is known that ß? has an antiautomorphism * which is defined by 7^ =

7^-1 for w £ 6r, and that the bilinear form on M satisfies

(1.8) (mh,n) = (m,nh*)   for all m, n £ M and h £ ß?.

Let co denote the partition (V) = (1, 1, ... , 1) of r. Note that xj? = ß?

and

(1.9) (hxh2,h^w = (h2,h\h,)w = (hx, h3h*2)a   for all hx,h2,h,£ß?.

Consequently,

(1.10) (hí,h2)(a = (h¡fhl)ai   foxallhx,h2£ß?.

The results (1.8) and (1.9) are proved in [2, 2.2 and 4.4].

Now, result (1.8) shows that M is a self-dual ¿^-module, so by our pre-

vious discussion, there exists an antiautomorphism * of the tf-Schur algebra,

End^(M). We next determine * explicitly.

1.11. Theorem. Let X, p £ A(n, r) and d £ 3X . Then the antiautomorphism

* ofSR(n,r) satisfies (tpXß)* = (¡>ßX .

Proof. Suppose that u and v £ &r. Then, using results (1.8)—(1.10), we have

(XXTu - <t>UX,tTv))l = (XX>       E      TwTvTu-> )

= the coefficient of 7, in     V^    71,7„7„-i
1 /    ^ W     V     U

weeideß

= U,  E vju-) =(tjv->,  E tv)
\       weeAd6ß / w      \ wçLe)d&)l     I w

= (tJu->,      E      O   =(Ti>      E      VJV-)
\ wzeßd-[S,        ' w        \ we6ßd~'6x >w

= the coefficient of 7j in      ^      ^wTuTv-]

we&ßd-'6l

= (        E TwTuTv~> > *ß)    =(Kl(-XlTu)>XßTv)ll-
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j j— 1 j*

Hence {m,<pxn) - (4>ßX m,n) for all m,n £ M. But (<px m,n) =

(m, (¡)dXßn), by result (1.6), and it follows that (<pdk)* = 4>dßX  .

In the case where q = 1, Green denotes the antiautomorphism * of the

Schur algebra by J [5, §2.7].

Because the tf-Schur algebra has an antiautomorphism, we may construct

from any SR(n, r)-module M the contravariant dual module M* in the usual

way. That is, M* is defined to be \ion\R(M, R) and 5 £ SR(n, r) acts on

/ £ M* by (fs)m = f(ms*) for all m £ M.

1.2. Remark. Every ^-homomorphism from x ß? to xxß? is given by left

multiplication by an element of ß?. Right multiplication by the same element

gives an J^-homomorphism from ß?xx to ß?x . Mapping left multiplication

by h to right multiplication by h gives an anti-isomorphism of End%,(<Qxxxß?)

to End^(0A ß?xx). We may compose this anti-isomorphism with the antiauto-

morphism * of SR(n, r) to get a canonical identification of the endomorphism

rings End^.(^xxxß?) and Endßr(($xß?xx). Under this identification, <px as

an element of End^(0AxA^) sends xßh to E^ee de ^wn ano- ^xn as an

element of End^©,^^) sends hxx to Eu,ee de ^Tw for all h£ß?.

We shall often be using homomorphisms in this paper, and we always adopt

the convention that the homomorphism is written on the side opposite to that

of the ring action. Thus, for example, if M is a right ^-module then the

image of m £ M under an ^-homomorphism (p is written as <\>m , but if M

is a left ^-module then we write mtj).

2.   tf-TENSOR SPACE

Homogeneous polynomial representations of general linear groups can be

described by the action of classical Schur algebras SR(n, r) (that is, the case

where R is a field and q = I) on the tensor space E®r = E ® E ® ■■■ ® E (r

times), where E is the natural module for GLn(R) (see, for example, [5]). We

shall set up a ^-analogue of 7®r.

First, we discuss products of the basis elements <px   of the tf-Schur algebra

which we gave in Theorem 1.4.   Let p, a, X, and p be compositions of r,

let u £ 3pa and d £ 3Xfl. Recall that <f>dXß maps xßß? into xxß? and </>f

annihilates x ß? if p ^ p . Therefore,

(2.1) ^"na^xu = 0   unless   a = X.

When a — X, the product <f>" <px is a linear combination of terms <f>e with

e £ 3   , but we know of no formula for calculating the coefficients, in general.

Next, note that </>!, acts as the identity on x,ß?. Therefore,xx   a^c a* uiv tuviiui,  w»   *.x.

(2-2) ¿ÍA« = <t>xu = <A



256 RICHARD DIPPER AND GORDON JAMES

In particular,

(2.3) 4>\xSR(n, r)(f)xßß 2 \iom^(xßß?, xxß?).

Also,

(2.4) {<t)xx\X £ A(n, r)} is a set of orthogonal idempotents of SR(n, r) whose

sum is the identity element of SR(n, r).

We now assume, until further notice, that n > r. In §8 we shall explain how

to adapt several of our results to the case where n < r.

We fix co to be the partition (lr) = (1, 1, ... , 1) of r. Since n > r, we

have co £ A(n, r). Note that xm is the identity element Tx of ß?.

2.5. Lemma. Suppose that s £ SR(n, r) and X £ A(n, r). We have: st¡)Xxx = 0

if and only if s<t>Xco = 0.

Proof. If S(f)Xxx = 0 then 0 = s<t>xxx<t)XXw = s<pxX(0. Conversely, if s<j)XXoj = 0 then

0 = s^xio^ajh) = sixxh) - S(t>xx(xxh) for all h £ ß?, so s<f>xxx = 0.

The lemma shows that post-multiplication by cf>ÀW embeds the left ideal

SR(n, r)<Pu in the left ideal SR(n, r)4>010). But the #-Schur algebra is a di-

rect sum of left ideals SR(n, r)4>xx (see result (2.4)). Therefore, when R is

a field, every irreducible module for the #-Schur algebra occurs as a composi-

tion factor of the left ideal SR(n, r)4>xww . This remark indicates why the set

■V"> r)4>Xww is important.

2.6. Definition. We denote the subset SR(n, r)cpww of the ^-Schur algebra by

ER(n, r), and we call it q-tensor space.

Now> <t>lwSR(n ' r)^L = HomAxw^ ' Xw^) = End^(X), and End^(^)
is canonically isomorphic to ß?. We shall freely identify ß? with the subalge-

bra (f>wwSR(n , r)<f>W(0 of SR(n, r). (If u £ &r then the isomorphism between

* and <t>LSR(n. O^L sends Tu to <\>uww and sends T* to (4>UWJ .) Using

this identification, we have:

(2.7) ^-tensor space ER(n,r) is an (SR(n, r) -ß?)-bimodule.

Since <$>ww is an idempotent, ^-tensor space is a free /î-module. In view of

results (2.1) and (2.2), we have

(2.8) {4>fjX £A(n,r),d£ 3X} is a basis of the /^-lattice ER(n , r). More-

over> ¿L = <t>\u>Td ■
It is helpful to understand why ER(n, r) is a ^r-analogue of tensor space, and

we explain this now. Take E to be a free /î-module with basis ex,e2, ... , en.

Then {ei ®ei ®-■ ■®ei\ix, i2, ... , ir£ {1,2, ... , n}} is a basis of 718"'. The

symmetric group &r acts on E®r on the right by place permutations. We define

an ^-isomorphism between ER(n, r) and 7®r by extending the following map
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to be linear:

<f>Xa) i-> ( ex ® ■ ■ ■ ® ex ® e2 ® ■ ■ ■ ® e2 ® ■ ■ ■ ® en ® ■ ■ ■ ® en )d.

Xl times X2 times Xn times

It is easy to check, in the case where q = 1, that this map is a bimodule

isomorphism. When q = 1, ß? is the group algebra of 6r and SR(n, r) is

the usual Schur algebra.

2.9. Definition. Suppose that p £ A(n, r). Let Mß be the right ß?-submodule

^ß(ßß? of ^-tensor space.

2.10. Theorem. We have M" = Yiom^ß?, xßß?) = 4>\ßSR(n, r)^w. The

right ß?-modules Mß  and x ß? are isomorphic.   A basis Mß  is given by

Proof. From (2.1) and (2.2), we see that both 4>ß0)ß? and <t>\ßSR(n, r)«^ have

basis {4>ßCO\d £ 3 } . Therefore, Mß = <t>ßilSR(n, r)^^, which in turn is equal

to Fiam^ß?, x ß?), by result (2.3).  The isomorphism between x ß? and

Mß exists on general grounds; explicitly, it is given by x h h-> <t>Xh  (h £ ß?).

The action of ß? on our basis of Mß was given in [2, 2.3ii)]:

(2.11) If a = (i, i + 1) is a basic transposition in 6r and d £ 3   then

Q<pdßa if l(da) = 1(d) + I and da i 3ß,

Kja = { Kl if M") = /(í/) + ! and da e 3, »

< + (î-l)<ffl   if l(da) = 1(d)-I.

If X and p are associated compositions, then xxß? and x ß? are isomor-

phic, in view of result (1.1), and therefore M   and Mß are isomorphic. Fur-

thermore, by multiplying ER(n, r) on the left by E^eAf« r)^;u> w^ich is the

identity of SR(n , r), we obtain

(2.12) ER(n,r)=    0   MX   as a right ^-module.
XeA(n,r)

2.13. Definition. Let U be a left SÄ(« , r)-module and let X £ A(n, r). Then

the 7?-submodule 4>xx U of U is the <?-weight space of U which corresponds

to the weight X.

Note that <t>xxlU is Ä-free if U is Ä-free. We have U = ÇBl€A(rl:r)<t>lxU,

since the elements (pxx are orthogonal idempotents of SR(n, r) whose sum is 1.

This decomposition of U is called the q-weight decomposition of U . (Compare

[5, §3].) For example, result (2.12) gives us the ^-weight decomposition of q-

tensor space. The following result is obvious.
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2.14. Theorem. Suppose that Ü < U are SR(n, r)-modules. Then each q-

weight space of U is the intersection with U of the corresponding q-weight

space of U. In particular, if U is an SR(n, r)-submodule of q-tensor space,

then Ü = ©AeA(„ rAÜnMx) asan R-module.

3.   #-SPECHT MODULES AND   g-WEYL MODULES

If X |= r, then we define yx £ ß? by

n=E(-*r/(w)v
w€ex

Because there is an outer automorphism of ß? which sends xx to yx, it is

possible to interchange the roles of xx and yx in many places. For example,

the #-Schur algebra, which we defined to be End^(0lgA(;! r) xxß?), turns out

to be isomorphic to End^(©AeA(n ^yxß^) ■ Details can be found in [4].

Properties of the subsets yxß?x of ß? are of great importance, and we

recall these now. We define the relation > on A(n,r) by writing X > p if

E/=i K - E/=i Pi f°r all J ■ Thus, the restriction of > to the set of partitions

of r is the usual dominance order, and the results X > p and p > X hold

simultaneously if and only if X and p are associated compositions. We write

X > p if X > p and E/=i K < E/=i i"i f°r some J • For X \= r, the element wx
of 3xxi is defined to be the unique &x - &x> double coset representative with

the trivial intersection property; that is, wx &Àwx ("16^ = (1). The following

results were proved in [2, 4.1]:

(3.1) Suppose that X, p\= r. Then

(i) xxß?yß±(0) only if p'> X ,

(ii) xxß?yxi is a free /?-module of rank one, spanned by xxTw yx*.

The next lemma translates these results into statements about the #-Schur

algebra.

3.2. Lemma. Suppose that X, p £ A(n, r). Then

(i) ̂ lA(". r)yß ï ° only #V > ¿.

(ii) <¡)XxxSR(n, r)yx, is a free R-module of rank one, spanned by (j>\wTw yx,.

Proof. Note that <f>[\SR(n, r)y c dj^S^n, r)4>xw(0 = Mk. We saw in the proof

of Theorem 2.10 how xxh i-> <j>X(¡)h gives an isomorphism between the right

^-modules xxß? and Ml, and this enables us to deduce the results in the

lemma from the results in (3.1).

3.3. Definition. Suppose that X £ A(n , r). Let zx — <t>\wTw yx*, and let S be

the ^-submodule zxß? of Mx. We call S1 a q-Specht module.

Under the canonical isomorphism xxh >-► 4>xJh between xxß? and M ,

xx Tw yxl is mapped to zx, so S   is canonically isomorphic to the Specht mod-
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ule which was described in [2, §4]. By [2, 5.9] each g-Specht module is free

as an JR-module. In [2, 4.3] we proved that S and Sß are isomorphic if the

compositions X and p are associated.

Now suppose that X, p £ A(n, r) and p ^ X.   Then, for all d £ 3,  ,

we have <pdXßSß = <t>dXß<l>ßC0Twyß,ß? Q ^S^n, r)yß,ß? = 0, by Lemma 3.2(i).

Therefore, we have the following result, which, in the case where q = 1, is well

known and fundamental to the representation theory of the symmetric group.

(3.4) If 0 e Hom^Af" , Mx) and p £ X then <f>S" = (0).
A very important property of the ^-Specht module Sß is that it is equal

to the intersection of all the kernels of homomorphisms of the kind described

in result (3.4); indeed, Sß equals the intersection of a certain subset of such

kernels. In the case where 7? is a field, this result was described in [2, 7.5].

We wish to restate the theorem now, and extend it to the case where R is an

integral domain.

3.5. Definition. For the moment, fix p = (px, p2, ... , pn) to be a partition

of r.   If 1 < i < n - 1  and 0 < ;' < pi+x, then let  y/., - <j)!  , where

X = (Xx, X2, ... , Xn) is the composition of r for which Xi - pi + pi+x - j,

¿i+i = j> and ^a = f¿a if I <a <n and aj^i or i+l. Note that X > p.

3.6. Theorem (the Kernel Intersection Theorem for ^-Specht modules). Suppose

that p\- r and that p has precisely k nonzero parts. Then

;=2 ;=0

Proof. The theorem is true when R is a field by [2, 7.5]. When R is an

integral domain, let v be in the kernel intersection.   Since v £ <j>x ß?, we

may regard v as an element of <t>ßü)^F, where 7 denotes the quotient field

of R, and ß?F denotes the Hecke algebra defined over 7. Then v belongs

to <plßWTw yß>ß?F, that is, the Specht module over F.   Thus, v e 4>xßWß? n

(ßXß(0Tw yß'ß?F = Kw^w Jy^ ' where the equality holds because of the Standard

Basis Theorem [2, 5.6]. That is, v £ Sß , as we wished to show.

3.7. Corollary. Suppose that p £ A(n, r). Then

Sß = {v £ Mß\d/Xßv = 0 for all X£A(n, r) with p^Xand all d £ 3Xß}.

We now define a left SR(n, r)-module Lß which has properties similar to

those of the right ^-module Mß . Inside Lß will be a <7-Weyl module, which

behaves in some ways like a ^-Specht module.

3.8. Definitions. Suppose that p £ A(n, r).

(i) Let Lß be the left ideal SR(n, r)yß of SR(n, r).

(ii) Let Wß be the SR(n, r)-submodule SR(n, r)zß of Lß . We call Wß

a q- Weyl module.
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Note that we have Lß = ER(n, r)y , since y = 4>(0(0yß ■ We have now

introduced the four main modules which we shall use, so for the convenience

of the reader, we gather their definitions together.

Summary. Suppose that p £ A(n, r).

(i) Mß is the right ^-submodule <$>ßWß? of ^-tensor space.

(ii) The <?-Specht module Sß is the right ¿F-submodule zßß? of Mß,

where z   — ó    T   v >.
¡i       V ¡10)    w * n

(iii) Lß is the left SR(n, r)-submodule SR(n, r)y   of g-tensor space.

(iv) The <7-Weyl module Wß is the left SR(n, r)-submodule SR(n, r)z   of

Lß .

3.9. Lemma. Suppose that X and p are associated compositions in A(n , r).

Then Lx ä Lß and Wx = Wß .

Proof. For some d £ 3, , we have d~x&xd - & . Hence yxTd — Tdy , and

post-multiplication by Td gives an isomorphism from L to Lß . Also, <j>. is

invertible. Now, <t>dXßzß = <t>dXß<t>ß0)Twyß, £ <t>\xSR(n, r)yx, (here, we have used

the fact that X' = p). Therefore, 4>Xßzß = C(t>XmTw yX' - czx for some c £ R,

by Lemma 3.2(ii). Thus, czx e Wß and since </>. is invertible, we deduce that
Wx = Wß.

4. The irreducible SR(n, r)-MODULES Fß

The irreducible ^"-modules, when R is a field, were constructed as top

factors of certain ^-Specht modules in [2], using a certain bilinear form on Mß .

In a similar way, we are going to produce the irreducible SR(n, r)-modules,

when R is a field, as top factors of <?-Weyl modules.

We have seen in (2.12) how to identify ^-tensor space with ©AeA(„ r) xxß?.

Therefore, there is a nondegenerate bilinear form ( , ) on g-tensor space which

satisfies the following (see results (1.6) and (1.8)):

(4.1) Let u, v £ ER(n, r), h £ ß?, and s £ SR(n, r). Then

(i) (s*u, v) = (u, sv),

(ii) (uh , v) = (u, vh*).

For q = 1, the form ( , ) is the canonical form on tensor space [5, p. 33,

Example 1 and (5.1c)]. As in [5, §5.5] we contract the form which is given by

restricting ( , ) to Lß.

4.2. Definition. Suppose that p £ A(n, r). Define a bilinear form (( , )) on

L" = ER(n , r)yß by ((uyß , vyß)) = (u,vyß) for u,v £ ER(n , r).

Note that y * = y  , so if uy  = u'yß , where u, u £ ER(n, r), then

«"^. yyß)) = (u. vyß) = (uyß >v) = (u'yß »v) = <"' > vy„) = «u'yß > yyß)) ■
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This verifies that (( , )) is well defined (compare [5, 5.5b]).

Obviously, the contracted form inherits property (4. l)(i):

(4.3) Let u,v £ Lß and 5 £ SR(n, r). Then {{s*u, v)) = ((«, sv)).

As usual, if U is a subset of Lß then U    denotes {v £ Lß\((v , u)) —0 for

all u £ U} .

4.4. Theorem. Suppose that R is a field and p £ A(n, r). Let U be an

SR(n, r)-submodule of Lß . Then Wß ç U or U ç Wß± .

Proof (compare [2, 4.8]). If (f)XßßU ¿ 0 then by Lemma 3.2(ii), <t>Xß(üTw yß!£U,

and hence Wß ç U. On the other hand, if </> ' U = 0 then for all u £ U and

s £ SR(n, r), we have

0 =((</>' su, ó1   7  y ,)) = ((u,s*<bX   7  y ,))^Yßß     ' Yßw   wß-rn il       w1*»"  Yßw   wß-rßu

(because cj)Xßß = ^ and <^ßi/ßW = <PßJ, and so ((u,s*zß)) = 0. Thus

U ç WßX , as desired.

4.5. Lemma. The generator z   of Sß is anisotropic.

Proof,  z  = ó    7   v / so■"        ß      t ßw   w * p

((z , z )) — (ó    7   , ó    7   v i) — (x 7   , x T   v i)  .\\   H>    pH       WßW + w^ J YßW   wßSß i       \   ß   wß'    ß   w sß iß

Now, x T  y i = x 7   + terms x T,, where d £ 3   and d ^ u;   (compare

[2, 4.1]). Therefore, ((*„, z^)) = (xßTw^, xßTw)ß = ql{w¿ ¿0.

By combining our last two results, we have (compare [2, 4.9])

4.6. Theorem. Suppose that R is a field and p £ A(n, r). Then Wß n

WßL is the unique maximal submodule of Wß and the quotient module

Wß/(Wß n Wß ) is an absolutely irreducible self-dual SR(n, r)-module.

4.7. Definition. Suppose that R is a field and p £ A(n, r). The irreducible

SR(n, r)-module Wß/(WßnWß±) is denoted by FM.

We have seen that if X and p are associated compositions then W = Wß ,

so in this case 7 = Fß . Thus, #-Weyl modules and the irreducible modules

Fß are indexed by partitions of r.

The next few results are essentially results from [2], but we include the proofs

for completeness.

4.8. Lemma (compare [2, 4.5]). Suppose that X, p £ A(n, r), and

^^omSR{nJLß',LX').

We have:

(i) IfX^p then ker6> Wß.

(ii) If p£X then Im 6 < Wx± .
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Proof, (i) Assume that kerö £ Wß. Note that 4>\ßzß = zß-  we have 0 ^

V = (C V"')e = *>1» V*')ö € ̂ R(n,r)yi,. Therefore, X" > p
by Lemma 3.2. Thus, X > p .

(ii) Assume that u £ Lß   and «0 ^ W7    . Let szx be an element of W

with 5 € 5Ä(«, r), such that szx is not orthogonal to u8 . Then

0 ¿ ((szx, ud)) = ((scpXX(0Twjx,, ud)) = ({<p\wTwyx,, <t>\/(ud))).

Therefore, 0 ^ <pxxs*(u6) = ((f>xxs*u)6 , so 0 / 4>xxs*u £ 4>xxSR(n, r)y ,. There-

fore, p" > A by Lemma 3.2. Thus, ^ > A.

4.9. Lemma (compare [2, 4.11]). Suppose that X, p £ A(n, r). Let U be an

SR(n, r)-submodule of Lß and let 6 bean SR(n, r)-homomorphism from Wx

into Lß '/U. If 6 is nonzero then p>X. If X' = p  then Imö < (Wx + U)/U.

Proof. Assume that 6 is nonzero. Since zx generates W , we find 5 e SR(n, r)

such that zx6 = sy < + U and sy - £ U. Therefore, zx6 = 4>xxzx0 = (j){xsy > +

U. In particular, 0 ^ <t>xxsyß' € 4>xxSR(n, r)y ,. By Lemma 3.2, p" > X, so

p>X.
If X' = p then zx6 = 4>xxsyX' + U = czx + U for some c £ R, by Lemma

3.2. Therefore, Im0 < (Wx + U)/U.

Applying the results of the last two lemmas, we have

4.10. Corollary (compare [2, 4.12]). Suppose that R is a field and X, p £

A(n, r). We have:

(i) If F   occurs as a composition factor of Lß   then p > X.

(ii) If Fx occurs as a composition factor of Lß ¡Wß then p>X.

4.11. Corollary (compare [2, 4.13]). Suppose that R is a field and X, p £

A(n, r). We have F = Fß if and only if X and p are associated composi-

tions. Thus, {F \X h r} ¿s a set of nonisomorphic absolutely irreducible self-dual

SR(n, r)-modules.

One of our goals is to prove that every irreducible SR(n, r)-module (when

R is a field) is isomorphic to some Fx. That is, {FX\X h r} is complete.

If R is a field and 1 + q + q2 + ■ ■ ■ + q'~x ¿ 0 for all i with 1 < i < r then

the Hecke algebra is semisimple and has precisely as many pairwise nonisomor-

phic irreducible modules as there are partitions of r [2, 4.3]. In these circum-

stances, it follows that the tf-Schur algebra is also semisimple with as many irre-

ducibles as there are partitions of r. By Theorem 4.6, 7 = W in this case, so

{W^jA \- r} is a complete set of irreducible SR(n , r)-modules.

We now give two more corollaries of Lemmas 4.8 and 4.9 in the case where

R is a field, but without assuming that the #-Schur algebra is semisimple.
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4.12. Corollary (compare [2, 4.14]). Suppose that R is a field and p £ A(n, r).
i

Then the multiplicity of Fß as a composition factor of Lß   and of Wß is one.
i

Proof. By Corollary 4.10, Fß is not a composition factor of Lß ¡Wß . Hence

Fß is not a composition factor of (Lß /Wß)* which is isomorphic to Wß± .

In particular, Fß is not a composition factor of Wß n Wß±. Since Fß =

Wß/(Wß n Wß±), the corollary now follows by considering the series Wß n

Wß± <Wß< Lß .

By combining Corollaries 4.10 and 4.12, we have

4.13. Corollary. Suppose that R is a field. For X and p partitions of r, let dx

be the multiplicity of Fß as a composition factor of W . If the partitions of r

are ordered lexiographically then the matrix (dx ) is upper unitriangular.

We conclude this section with a description of the unique maximal submodule

of the <7-Weyl module in terms of ^-weight spaces (compare [5, 5.4b]).

4.14. Lemma. Suppose that R is afield and that p £ A(n, r). Let

rß(Wß) = {v£Wß\<j>Xßßv = 0}.

Then r (Wß) is a proper subspace of Wß, and for every proper SR(n, r)-

submodule U of Wß, we have U ç r (Wß).

Proof. Since 4>ßßzß = zß ¿ 0, we see that rß(Wß) ¿ Wß. Suppose that U

is an SR(n, r)-submodule of Wß, but U £ r (Wß). Then for some u £ U

)   u t¿ 0.  By Lemma *

nonzero c £ R. Therefore, z  £ U and U = Wß .

we have u £ r\.(Wß), so cp   u ^ 0.  By Lemma 3.2, <p   u = cz    for some
r* Mr* MM M

From Lemma 4.14, we see that the sum of all proper submodules of Wß

is contained in r (Wß) and so is a proper submodule of Wß . This provides

another proof that Wß has a unique maximal submodule.

5. The left module Lß for the <?-Schur algebra

In the theory of g-Specht modules Sß , it is helpful to work with Mß which

contains Sß . Similarly when dealing with #-Weyl modules Wß , the module

Lß which contains Wß is useful. We shall construct a basis for Lß in this

section. First, we need a combinatorial definition.

5.1. Definition. Suppose that X and p are compositions of r. Let

&Xß = {d£3Xß\exnd&ßd~x = (l)}.

Note that if d £ W, then every element w of &xd& has a unique ex-

pression in the form w = udv with u £ <BX and v £ 6 . Also, l(w) =

l(u) + 1(d) + l(v).
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5.2. Theorem. Suppose that p £ A(n, r).  Then Lß is free as an R-module,

with basis

{<t>lTdyß\X£A(n,r)andd£WXß},

l(v)
Proof. Fix X£A(n,r).lfd£ WXß then xxTdyß = Ewee, E,e6 {-«Y^X udv

^ 0. Hence {xxTdyß\d £<&Xß} is a linearly independent subset of ß?. Thus

^\w^dyß\d e<^xß} *s a ^nearly independent subset of Lß n Mx .

Now, Lß DMX = <t>\xER(n, r)yß and {<t>\aTd\d £ 3X} is a basis of Mx.

Therefore, the elements <t>\wTdyß with d £ 3X generate Lß(~)Mx . For d £3X,

let d denote the distinguished double coset representative of @xd& . Then

d = dv for some v £ G   such that 1(d) - 1(d) + l(v). Hence, we have

Ajdyß = <t>LTdTvyß = (-1)/("VL^ •

Thus, {<t>\mTdyß\d£3Xß} generates Lß n Mx .

Finally, suppose that d £ 3x\é?x . Then &x n d& d~x  contains a basic

transposition,  a say, and d~ ad is a basic transposition,  d~xad — b say,

and TaTd = TdTb  (compare [2, 1.6]).   Since b £ &ß, we may write yß as

(l-q~XTb)yß for some yß £ SR(n, r). Then <pXxJdyß = ¿r¿(l -q~lTb)yß =

<t>L(l - Q~X Ta)Tdyß ■ But <t>\wTa = I^Xrn  SÍnCe a E &X ' b^ reSult (2-l l)• There"

We have now proved that {4>XwTdy \d £ ^ } generates Lß DM , and since

Z/ = ©A€A(„ ̂ (7^ n A/ ) by Theorem 2.14, the proof of the theorem is now

complete.

6. Sets of homomorphisms

It was observed by Carter and Lusztig [1] that tensor space contains copies

of various important spaces of homomorphisms. We investigate analogues of

their results for ^-tensor space in this section.

If X is a subset of the #-Schur algebra, then the left annihilator l(X) is

the left ideal {s £ SR(n, r)\sx = 0 for all x £ X} of SR(n, r), and the right

annihilator r(X) is defined in a similar way. If X is a set with just one element,

X — {s}, say, then we use the abbreviations r(X) = r(s) and l(X) = l(s).

6.1. Lemma. Suppose that p £ A(n, r).

(i) If s £ <pXßßSR(n, r) then rl(s) < 4>xßßSR(n , r).

(ii) // 5 £ SR(n , r)<t>xßß, then lr(s) < SR(n, r)cf>Xßß .

Proof. Suppose that 5 e ^^/?(n > r)  and that v = rl(s).   We have v =

Ea     «    cf)luv  by result (2.4).   But if X ^ p then <p\xs = 0 so (ß^v = 0.
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Therefore, v = <j> v £ <t>ßßSR(n, r). This completes the proof of part (i) of

the lemma, and the proof of part (ii) is similar.

6.2. Lemma. Suppose that s belongs to q-tensor space. Then

lr(s) = {v £ER(n, r)\ if h £ ß? and s h = 0, then vh = 0}.

Proof. If v £ lr(s), then v £ ER(n, r) by Lemma 6.1 (ii), and vh = 0 for all

h£ß? such that sh = 0.

Conversely, suppose that v £ ER(n, r) and vh = 0 for all h £ ß? such that

s h = 0. Let u £ r(s). We must prove that vu = 0. We have 0 = su = s<j)XWí0u,

so S(f>xwwU(f>xXco = 0 for all X € A(n, r). But «¿wi^L e * > so «¿LMt = ° ■

Therefore, vc^^ucj)^ = 0, by Lemma 2.5. By summing over X £ A(n, r), we

obtain vcj)Xwcou = 0. But v £ ER(n, r) so V(f>xœw = u . We have now proved that

vu = 0, as desired.

6.3. Lemma. Suppose that s belongs to q-tensor space.

(i) If U is an ß?-submodule of q-tensor space, then the R-modules

Hom^,(sß?, U) and lr(s) n U are canonically isomorphic.

(ii) If U is an SR(n, r)-submodule of q-tensor space, then the R-modules

Homs ,    JSR(n, r)s, U) and rl(s) n U are canonically isomorphic.

Proof, (i) Suppose that U is an ^-submodule of tj-tensor space. If 6 £

Hom^(sß?, U) then 6s £ lr(s) n U, by Lemma 6.2. On the other hand, if

u £ lr(s) n U, then sh >-> uh (h £ ß?) gives an element of Hom^sß?, U).

Hence 6 >-* 6s is the required isomorphism.

(ii) The proof of part (ii) is similar to the proof of part (i), but is simpler,

since Lemma 6.2 is not needed.

6.4. Theorem. Suppose that p £ A(n, r). Then

(i) Mß = rl(<f>xßu)nER(n,r) and

(ii) Sß = rl(zß)nER(n,r).

Proof (i) Recall that M» = 4>xßWß? = <p\ßSR(n, r)<pxœœ . Clearly, Mß < rl(<t>xßJ

n ER(n, r). On the other hand, by Lemma 6.1(i),

= <t>ßßSR(n,r)<pXww = Mß,

and this completes the proof of result (i).

(ii) Again, one inclusion, namely Sß = z ß? < rl(z ) n ER(n, r), is clear.

Suppose, therefore, that v £ rl'z )C\ER(n, r). Then v £ Mß by Lemma 6.1(i).

If X £ A(n, r) with p^X and d £ 3Xß then <j)dXßzß £ <j>[xSR(n, r)y , - (0),

i<
that v £ Sß , as desired.

by Lemma 3.2. Therefore, cf>x v — 0. By applying Corollary 3.7, we deduce

We remark that it is not hard to show that rl(<j>   ) = <t>ßßSR(n, r)
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Next, notice that if U is an SR(n, r)-submodule of ^-tensor space, then we

obtain from each element h of ß? an SR(n, r)-homomorphism from U into

g-tensor space by u h-> uh (u£ U). Similarly, if U is an X-submodule of q-

tensor space, then each element 5 of SR(n, r) gives us an ^-homomorphism

MH su (u £ U) from U into ^-tensor space. It is of interest to know whether

every homomorphism is given in this simple way.

6.5. Lemma. Suppose that p £ A(n, r) and that U is an ß?-submodule of

q-tensor space. Then

(i) Every element of Hom^(Mß , ER(n, r)) is given by left multiplication

by some element of SR(n, r).

(ii) The R-modules Hom^,(Mß , U) and SR(n, r)4>    n U are canonically

isomorphic.

Proof Suppose that X £ A(n, r) and 6 £ Hom^(Mß, Mx). Then d(<j)XßU)) =

(j>Xwhe for some he £ ß?. Since 4> ß? and x ß? are canonically isomor-

phic, the map x h i-> xxheh (h £ ß?) is an element of Horn^x ß?, xxß?).

Therefore, xxhe = se(x ) for some sd £ SR(n, r).  It is easy to check that

^Xw^e — se(f)ß(a ■ Therefore, 9 is obtained by multiplying on the left side by

sg . Since Hom^(Mß, ER(n, r)) - ©AeA(„ r] Hom^,(Mß, Mx), every element

of Hom^,(Mß, ER(n,r)) is given by left multiplication by some element of

SR(n,r).

The isomorphism between Fiom^(Mß, U) and SR(n, r)cj)X   n U is given

by 0~0<C-

6.6. Theorem (the double centralizer property).

W Endv^(7R(«,r))=^.
(ii) Endjy,(ER(n , r)) = SR(n, r).

Proof. The first result holds since

ER(n,r)=SR(n,r)4>Xww   and   ß? = (t>lwSR(n, r)^

and 4>ww is an idempotent. The second result follows from Lemma 6.5(i) and

the fact that Endr(ER(n , r)) = ©AeA(„ r) Fiom^(Mx, ER(n , r)).

6.7. Lemma. Suppose that X, p £ A(n, r) and that U is an SR(n, r)-submodule

of q-tensor space. Then

(i) Every element of Hom5 . ALß , ER(n, r)) is given by right multiplica-

tion by some element of ß?.

(ii) The R-modules Hom5 , r)(Lß , U) and y ß?r\U are canonically iso-

morphic.

(iii) The R-modules Homs , ALß, L ) and Fiom.ßr(ß?y ß?yx) are

canonically isomorphic.
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Proof. For 0 e Homs {n,r](Lß, L ), let 0 denote the restriction of 0 to ß?yß .

We have yßd = <f>xwwy) £ <t>xmwER(n, r)yx = ß?yx,sod£ Fiom^(ß?yß, ß?yx).

But every element of Hom^,(ß?y , ß?yx) is given by right multiplication by

an element of ß? [3, 3.7]. Moreover, 0 corresponds to right multiplication by

h £ ß? if and only if (syß)9 = s(yß6) = syßh for all s £ SR(n, r), that is, if

and only if 0 corresponds to right multiplication by h . In particular, 0 = 0

if and only if 0 = 0.

Part (i) of the lemma is obtained by noting that ER(n, r) = L , where

X = (V). The isomorphism in part (ii) of the lemma is given by oh yd.

Finally, 0 —> 0 gives the isomorphism of part (iii) of the lemma.

6.8. Lemma. Suppose that p £ A(n, r) and that U is an SR(n, r)-submodule

of q-tensor space. Then

(i) Every element of Hom5 <   ÄWß ,ER(n,r)) is given by right multipli-

cation by some element of ß?.

(ii)  The R-modules Homs ,   r)(Wß, U) and Sß n U are canonically iso-

morphic.

Proof. Suppose that 0 £ Hom5 {„tr)(Wß, U). Then zßd £ rl(zß) n U. There-

fore zn9 - zh for some h £ ß? by Theorem 6.4(h). Part (i) of the lemma

follows immediately. The isomorphism in part (ii) of the lemma is given by

0 i-> zß6.

Lemmas 6.7 and 6.8 show that every homomorphism from Lß or Wß into

^-tensor space is given by right multiplication, and Lemma 6.5 shows that every

homomorphism from Mß into ^-tensor space is given by left multiplication.

The situation for g-Specht modules Sß is more complicated.

6.9. Lemma. Suppose that X, p £ A(n, r). Let ¡È? denote the set of ß?-

homomorphisms from Sß into M which can be extended to an element of

Homjr(Mß, M ). Then Homjr(Sß , M ) is canonically isomorphic, as an R-

module, to lr(z )C\M , and the restriction of this isomorphism to W maps onto

wßnMx.

Proof. By Lemma 6.3(i), 0 >-> 6zß   (9 £ Fiom.T(Sß, Mx)) gives a canonical

isomorphism between Honur(5,/', Mx) and lr(zß) n Mx. If 0 € f then 0

is given by left multiplication by some element of SR(n, r), by Lemma 6.5,

so 9z £ Wß. On the other hand, if szß e Wß n Mx then 0: zßh i-> szßh

(h £ ß?) gives an element of %, and this remark completes the proof of the

lemma.

Of course, we have Wß < lr(z ), but we shall see later (Example (6.14))

that this inclusion can be strict, and in such cases, not every element of

Hom^,(Sß, MA) can be extended to an element of Hom^,(Mß , Mx). We in-

vestigate the module lr(zß) by first showing that lr(yß) is often equal to Lß :
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6.10.   Theorem. Suppose that p £ A(n, r).  Assume that q + 1 ^ 0.   Then

Lß = lr(yß).

Proof. Since Lß =SR(n, r)yß , it is clear that Lß < lr(yß).

Suppose that v £ lr(y ).   Then v belongs to ^-tensor space by Lemma

6.1 (ii).  For each X £ A(n, r), let vx = 4>xxxv. Then v - Y,XeA,„ r)vx, so it

is sufficient to prove that vx £ Lß.  We have vx = Y^des cd$Xw f°r certain

coefficients cd £ R.

Next, we divide up 3X in the following way (compare [2, 1.6]).   If d £

3X , then define u(d) to be the composition of r which corresponds to &x n

dSßd~x. We have

Sx =   U   ̂ «/,n<3„)>
deSt,,,

a disjoint union, so

vx= E   E   cdJ>.
deS>iß u€Stl/{d)neß

du

du^Xw '

We claim tht cdu = (-q)~l(u)cd if d £ 3Xß and u £ 3v{d) n 6^ . We prove

this result by induction on l(u). Since the result is immediate if l(u) — 0, we

may assume that u - wa where a is a basic transposition and l(u) = l(w)+ 1.

Then w £ 3,., n 6„ and a £ &. Since a e 6„, we have v (1 + 7J = 0,
Vyf*) M M M fi u

and since uA e /r(y ), we have vx(l + Ta) = 0.

Now if ¿i g ■®I/((/) n 6 and ü is distinct from u and t/j, then düa is

distinct from du and í/u; . Therefore, when we postmultiply vx by Ta,

and apply result (2.11), we get cdw4>dxuw + cdu(q<f>d™ + (q - l)<pdxuJ + (a lin-

ear combination of terms which do not involve  §Xu)  or 4>x™).   Therefore,

vx(l + Ta) = (acdu + cdw)^dxL + <Ô + other terms- Since vx(l + Ta) = Q,we

obtain cdu = (-q)~lcdw = (-q)~mcd , by induction.

Now suppose that d £ 3X \WX . We shall prove that cd = 0. Since d £

&x  , there exists a basic transposition, a say, in &xr\d& d~  , and d~ ad isa

basic transposition, d~ ad = b say. Now, vx(l + Tb) = 0 since b £ &  . Also,

(¡)dXwTb = q<t>dXw since l(db) = 1(d) + 1 and db = ad i 3X (see result (2.11)).

Therefore,

0 = «¿(1 + Tb) = (cX«, + other terms)(l + Tb)

= ( 1 + q)cd4>Xco + other terms.

Since 1 + q ^ 0, we have cd = 0.

We now put together the results which we have proved. If d £ 3X \WX   and

" e ®v(d) n % then cdu = i-lYmcd = ^-^d^xß then 9v(d) "&ß = 6ß
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-/("),
and cdu = (-q)   ( 'cd for all u£&ß. Therefore,

d&kß ueeM

But <t>t = 4Ju ■ Thus, vx = Ede^ cd4.yß 6 V«, r)y„ . That is, ^ e 7" ,

as we wished to show.

Applying Lemma 6.2 to the result of the last theorem, we obtain

6.11. Corollary. Suppose that p £ A(n, r). Assume that q + 1 ¿0. Then

Lß = {v £ ER(n ,r)\ifh£ß? andyßh = 0 then vh = 0}.

We also have

(6.12) lr(zß) = {v£ER(n,r)\ if h £ ß? and zßh = 0 then vh = 0} .

A composition p is said to be 2-regular if all its nonzero parts are distinct.

6.13. Theorem. Suppose that p £ A(n , r). If q + I ^0 or p is 2-regular, then

lr(zß) C Lß .

Proof. We have r(yß,) ç r(zß), so lr(zß) ç lr(yß,). If q+1 ^ 0 then lr(yß,) =
i

Lß  by Theorem 6.10, so the conclusion of the theorem is correct in this case.

Now suppose that p is 2-regular. By [2, 4.10], we find h £ ß? and 0 ^ c £ R

such that xßTw yß<hyß, = cxßTw yß,. That is, zß(c - hyß,) = 0. Assume that

v £ lr(z ). Then v(c - hy >) - 0, and so cv = vhy < £ Lß . In the case where
i

R is a field, we immediately deduce that v £ Lß , as we want. In general, from

Theorem 5.2 we deduce easily that Lß has an /î-complement in ER(n, r)

and therefore Lß = ER(n, r) n LßF , where LßF denotes Lß defined over the

quotient field F of R. Hence v £ Lß   in general.

The following simple example illustrates the need for the special hypotheses

in Theorems 6.10 and 6.13.

6.14. Example. Let r = 2 < n . We have x{2) - 1 + 712) and y,2) = 1-^_17(12).

It is easy to calculate that {h £ ß?\y{2)h = 0} = x{2)ß?, and that (t>mœx(2) =

(q + l)<t>,2)(0 ■ Hence if q + 1 = 0 then

(f>{2)(0 £ {v £ ER(n, r)\ if h £ ß? and y(2)h = 0 then vh = 0} = lr(y{2)),

by Lemma 6.2. But cf>,2)w £ 7(2) (for example, because cp,2, £ AT , and

7(2) n M(1) = 0 since ^2)(2) l% emPty—see Theorem 5.2). Therefore, when

q + 1 = 0, we have that 7(2) is a proper subset of lr(y,2)). Thus, we cannot

omit the hypothesis that ^ + 1^0 from Theorem 6.10. Also, if p = (l2) then

z = y,2), so lr(z ) °t Lß , in this case where # + 1=0 and p is not 2-regular.

This shows why the hypothesis of Theorem 6.13 is needed.
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7. Kernel intersections

One of our main aims is to prove that the top composition factors of <?-Weyl

modules provide a complete set of irreducible SR(n, r)-modules when R is

a field. There seems to be no way of seeing directly why the g-Schur algebra

should have precisely as many irreducible modules as there are partitions of r,

so our proof is circuitous. The principal idea will be to describe the g-Weyl

module Wß , which is a submodule of Lß , as the intersection of the kernels

of various SR(n, r)-homomorphisms which are defined on Lß . In the process

of proving this, several other things come out, including a basis of the #-Weyl

module.

Just as a basis of Hom^x ß?, xxß?) is given by {<t>Xß\d £ 3X } , where

<,(*„*)=  E T»h   (Äe^)>
wee~deß

we have a basis {(¡>d \d e 3Xß} of Homx(ß?yx, ß?yß), where

(hyxK = h E (-«T'^K    (h£ß?).
weeAdeß

This was shown in [3, 3.7], and follows from the fact that ß? has an outer

automorphism which interchanges the roles of xx and yx. We shall use </>A

also to denote the corresponding element of Hom5 (n AL , Lß) (see Lemma

6.7(iii)).
For the remainder of this section, we shall assume that p is a partition of

r. This assumption involves little loss when studying g-Weyl modules, in view

of Lemma 3.9.

By Lemma 4.8, we have the following:

(7.1) Wß < Lß , and if (f> £ Homs {nr)(Lß,Lx) and p £ X then Wß <p = 0.

We wish to strengthen this result to give a Kernel Intersection Theorem for

#-Weyl modules (compare result (3.4) and Theorem 3.6).

7.2. Definition (compare Definition 3.5). Fix p = (px, p2, ... , pn) to be a

partition of r. If 1 < i < n — 1 and 0 < j < pi+x then let y/^ = ¿x £

Hom5 ,n ALß, Lx), where X - (Xx, X2, ... , Xn) is the composition of r for

which X¡ = p¿ + pi+x - j, Xi+X - j, and Xa = pa if 1 < a < n and a ^ i or

i + l.

7.3. Definitions. Suppose that p\-r.

(i) Let Kß = f)i=2(\"Ç0 ker^._[ -, where k is equal to the number of

nonzero parts of p .

(ii) If X £ A(n, r), then let Xx denote the set of SR(n, r)-homomorphisms

from Lß to Lx . Let /T = C]XeMn,rhß^n,€X/ ker y, .

Note that Kß > Kß > Wß . In the end, we shall prove that Kß = Wß .
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7.4. Lemma. We have Kß = Kß .

Proof. Suppose that v £ Kß and that p £ X and 0 £ Horn,, . JL?, Lx). We

shall be home if we can prove that v9 = 0.

For each (/', j), with 2 < i < k and 0 < j < pi, ipi_x ■ corresponds to

right multiplication by some element ft(.. of ß?. Also, 0 corresponds to right

multiplication by some element he of ß? (see Lemma 6.7(i)). Now,

k v-r1

H D {hyß\h £ ß? and hyßhl} = 0} C {hyß\h £ ß? and hyßhe = 0},
i=2 y=0

by the version of Theorem 3.6 which is obtained by replacing x ß? by ß?yß ■ If

X is a left ideal of X, then we denote the right annihilator {h £ ß?\Xh = 0}

of X by rT(X). By taking the right annihilators of the two left ideals of ß?

which are given above, we see that he £ E, h^ß? + r^(ß?y ). Therefore,

v9 = vhg = 0, as we wished to show.

7.5. Lemma. We have Kß > Lß n lr(zß,) > Wß .

Proof. Obviously, Lß n lr(zß,) > Wß .

Assume that p t£ X and that 9 £ Homs - ALß, L ). Then 0 is right

multiplication by h £ ß?, say, in view of Lemma 6.7. Now, z *h = z ,9 = 0,

by Lemma 4.8. Therefore, if v £ Lß n lr(z ,) then v9 - vh - 0. That is,

Lß n lr(zß,) < KM = K" , as required.

In order to obtain the equality of Kß = Wß , we shall prove that dim Kß <
i

dim Wß when R is a field. To facilitate the proof of this inequality, we rein-

troduce from [2] some notation concerning tableaux.

If X \= r, then let t be the A-tableau in which the numbers 1, 2, ... , r

appear in order along the rows. The group &r acts on the set of A-tableaux

by letter permutations. This lets us interpret our earlier definitions of 3X and

of wx as follows. The permutation d belongs to 3X if and only if t d is

row-standard (that is, it's entries increase along the rows). The permutation wx

is that element of &r which as the property that 1, 2, ... , r appear in order

along the columns of t wx .

Now suppose that p and X = (Xx, X2, ...) are compositions of r. A p-

tableau of type A is a //-tableau with (possibly) repeated entries, where for each

i, the number of entries i is equal to X¡. We denote the set of /¿-tableaux of

type X by T(p, X). For A £ T(p, X), we say that A is row-standard if the

numbers are nondecreasing along each row of A and strictly row-standard if

the numbers are increasing along each row of A. We define column-standard

and strictly column-standard similarly. The tableau A is semiStandard if it

is row-standard and strictly column-standard. Let T0(p, X) denote the set of

semistandard //-tableaux of type X.
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Our first aim is to show that dim(Kß n Mx) < \T0(p, X)\ and we shall later

demonstrate that dim(Wß DM ) > \T0(p, X)\. These inequalities will prove

that dim*"' <dimWß.

We begin by giving an alternative description of Wx .  Recall that W.    is

defined to be the subset of 3X   = 3X n 3~   consisting of those elements d

such that &x n d& dTx = (1).   We have seen that ^    indexes a basis of

LßnMx.

7.6. Lemma. Suppose that X, p £ A(n, r). Then Wx is the set of elements d

in 3X which have the property that whenever i < j and i and j belong to the

same row of tß, then the row index of i in t d is less than the row index of j

in txd.

Proof. Let C denote the set of elements d in 3X which have the property

that if i and i + 1 belong to the same row of f then the row index of i in

txd is less than the row index of i + 1 in txd. We must prove that C = WÀ .

Throughout the proof, we assume that i and i + 1 belong to the same row of

f and denote (/,/'+ 1) by a. Thus, a is a basic transposition in 6 .

Let d £ WXß. Then d £ 3X and 16^6^1 = ISJie^J. Hence d&ß ç 3X,

so da £ 3X and l(da) = 1(d) + 1. Therefore, the row index of i in t d is

less than the row index of i + I in t d , so d £ C. We have now proved that

Next, let d £ C. Then d £ 3X and the row index of i va. t d is less than

that of i + I, so da £ 3X and I (da) = 1(d) + 1. Since l(da) = 1(d) + 1 for all
basic transpositions a in &  , we deduce that d is a distinguished left coset

representative of 6  , so d £ 3~~  .  Since da £ 3X and d £ 3X, we have

dad~x £ &x. Thus, dad~   £ &x for all basic transpositions a in 6^, and

henc 6X n d& d~x = (1). This shows that Cç^ and completes the proof

of the lemma.

From here until the end of this section, fix X e A(n, r) and p\- r. (Remem-

ber that we are assuming that n > r, so p £ A(n , r).)

7.7. Definition. If d £ 3X then define Ad £ T(p, X) by specifying that for all

a and b if the entry in row a and column b of tßw   is i, then the entry in

row a and column b of Ad is the row index of i in t d.

7.8. Example. Suppose that p = (422), X = (3221), and

1 2 7

x ,     3 5
íí/=68
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(Notice that txd is row-standard, so d £ 3X .) We have

1478

fw  = 2 5
3 6

and Ad is obtained from tßw simply by replacing each number by its corre-

sponding row index in t d :

14 13

^=12
23

It is easy to see that the map d^> Ad is a bijection between 3X and T(p, X).

(In fact, the inverse map is A i-> (w )A , given by Definition 7.20 below.)

In view of Lemma 7.6, we have

7.9. Lemma. The bijection d i-» Ad between 3X and T(p, X), upon restriction

to Wx i gives a bijection between Wx , and the set of strictly column-standard

p-tableaux of type X.

We remark, in passing, that this demonstrates that the rank of the free R-
i

module Lß is equal to the number of strictly column-standard tableaux in

T(p, X). The next lemma, which is similar in style to an argument of Carter and

Lusztig [1, §3], will furnish us with the inequality dim(Kß n Mx) > \T0(p, X)\.

7.10. Lemma. Suppose that p \- r and that X £ A(n, r). Assume that v £

K"' n Mx. Then v = Ed£wiß, c¿<¿,Jy f°r some cd e R ■ Ifvîé0, then for

some e £ WXß, which corresponds, as in Lemma 7.9, to a semistandard p-tableau

Ae of type X, we have ce ̂  0.

Proof. Define a relation > on the set of /¿-tableaux of type X by specifying

that A > B if for all j the sum of the numbers in the first j columns of A is

at most the sum of the numbers in the first j columns of B . Write A > B if

we have strict inequality somewhere.

If d £ W.i then let Ad be the corresponding strictly column-standard p-

tableau of type X (see Lemma 7.9).

Now, v can be written in the form stated in the lemma, in view of Theorem

5.2. Assume that v ^ 0. Choose e = Wx , such that ce ¿ 0 but cd = 0 if

Ad> Ag. We aim to show that Ae is semistandard.

Since Ae is strictly column-standard, we shall be home if we get a contra-

diction from assuming that two adjacent columns of Ag, say column j and

column j + I, have entries ax < a2 < ■ ■ ■ < am and bx < b2 < ■ ■ ■ < bm
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respectively, and a  > b   for some z .

A

A        A

a, > bv
A    .       Z Z

Ae-    A A

A

a...

A

h

Let dx, d2, ... , d   be the entries in column j of tßw   and let d    , , dm+\ '    m+2 "■

... , dm+n be the entries in column ;' + 1 of rw . (Note that dx+j = dx + i

for all /.)

LetX' = {dx,...,dz_x},X = {dz,...,dm}, Y = {dm+X,

*     = t^m+z+l ' • • • ' "m+nl '

,},and

tßwß:

X

*z-l

lm+\

m+z+l

Y'

If Z is any subset of {1, 2, ... , r} then let &z denote the symmetric group

onZ andletyz = Eu,€62(-?r/(,1,)7;.

Note that yxyYh = yXuY for some h £ ß? and hxyx,yYlyxyY - yXuX'yYuY'

for some hx e ß?.  Hence y^ux'^rur'^ = ^î^'^y'^x^y^ = ^l^ur^'^y' •

Therefore, yß'h = hxyv, where

i/ = (//',, p!2,... ,Pj_x, \x'\, \x\jy\, \y'\,p'j+2, ...).

Now, postmultiplication by h gives an SR(n , r)-homomorphism from L''   to

V . But v £ Kß =Kß   (see Lemma 7.4), and p £v . Therefore, vh = 0 .

Since v £ M , we know that v is a linear combination of terms r^ , where

d £ 3X. We write v = u, + v2, where t> [  is a linear combination of terms
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(pXo) with d £ 3X and d = ew for some w £ &XuY, where v2 is a linear

combination of terms cpXw with d £T)X, and where d is not of the form ew

with w £ &XuY . We shall deduce vxh = 0 from the fact that vh = 0.

Now, since bx < b2 < ■ ■ ■ < bz < az < ■ ■ ■ < am, we have ew £ 3X and

tfxJw = C for a» w e &XUY- Hence> if M' w e 6xuy then CX is a

linear combination of terms <¡)ex™   with u/ e &XuY ■

On the other hand, suppose that d £ 3X but d cannot be written in the

form ew with w £ &XuY ■ In this case, for each u £ &XuY , we see that (f>X(0Tu

does not involve any term of the form $eXm with w £ &XvY , as can easily be

proved by induction on l(u), using result (2.11).

Since vxh + v2h = 0, and h is a linear combination of terms Tu with

u £ &XuY , the results of the last two paragraphs show that vxh = 0.

Finally, we work out what vx must be. If w £ &XuY\(&x x &Y) then

Aew > Ae, so cew = 0, by our choice of e.   Thus,  vx  is that part of v

which is a combination of terms 4>X(0 with d £ e(&x x &Y).   Therefore,

«i = ^ee.x^-ir'^L^ = Cefoxyr- (Reca11 that C = €JW
if w£ 6XuY.)

Since vxh = 0 and ce ̂  0 and y^^yA = yXuY , we have ^^yy = 0. But

,e V"v    ,      ,-l(w) ,e   rr v~>    ,      ^-l(w) ,ew

weeXUY w66^uy

which is nonzero. This is the desired contradiction, and the lemma is proved.

7.11. Corollary. Suppose that p\- r and that X £ A(n, r). Assume that R is a

field. Then the dimension of Kß n M is at most the number of semistandard

p-tableaux of type X.

Proof. The corollary follows from the lemma by elementary linear algebra (see

[3,2.13]).

As we said earlier, we want to prove that din\(Kß n M ) < \TQ(p, X)\ <

dim (IF'' n Mx). Corollary 7.11 establishes the first of these inequalities, and

we now begin the task of proving the second inequality. Several preliminary

definitions and results are needed.

Let tx be a A-tableau and t2 be a /¿-tableau. (We reserve lower case symbols

like ti for tableaux whose entries are 1, 2, ... , r, without repeats.) We wish

to define an «-by-« matrix x(t\ > ̂ ) which depends on tx and t2. Remember

that both X and p have precisely n parts, some of which might be zero.

7.12. Definition. Suppose that /, is a A-tableau and t2 is a /¿-tableau. Let

X(tx, t2) be the «-by-« matrix whose entry in row i and column /' is the

cardinality of

{entries in the first i rows of i,} (1 {entries in the first ;' columns of t2).
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7.13. Example. Suppose that « = r = 9 and

9742 5

tx = 1 3 8
6

Then x(f\ > t2) is the 9x9 matrix:

(\    3   4

325 9
?2 = 18 6

74

8

5 5

8 8
9 9
9 9
9 9

• \

V:    : J

If ¿! and t[ are A-tableaux and i2 and t'2 are /¿-tableaux, then write

X(tx, t2) > x(t\, t'2) if each entry in /(r,, t2) is at least as big as the cor-

responding entry in x(t\, t'2). Write x(tx,t2) > x(f[ > 4) ^> *n addition,

X(U , t2) ¿ X(t[, t'2).

The following properties of our matrices are immediate from the definitions.

(7.14) X(txw, t2w) = x(t{, t2) for all w £ 6„

(i) /(/jit), í2) = jf(íj, í2) if i¿; belongs to the row stabilizer of

(7 15) ' '
v '    ;     (ii) x(t\ > t2w) = x(tx, t2) if w belongs to the column stabilizer

of t2.

If 1 < i < r and 1 < j < r and the row index of / in tx

(7.16)
is less than the row index of j in tx  and the column index

of /  in t2 is less than the column index of j in t2, then

x(tl,t2)>x(tl(i,j),t2) = x(t1 t2(i j))-

We are going to construct linearly independent elements of Wß n M , and

we begin by doing some calculations with Mx . Remember that {<t>Xo)\d £ 3X)

is a basis of M . We translate result (2.11) concerning products <PXo)Td into a

form which is more convenient for our current calculations. If w £ &r, then

we denote by w the unique element of 6¿iiJ n 3X .

7.17. Lemma. Suppose that d £ 3X and that a = (i, i + 1) isa basic transpo-

sition in &r. Then
,d   ,_ ô ,da ,d

Xw-

where ô - 0 or 1 and c = q - 1 if the row index of i + 1 in t d is less than

the row index of i in t d, and c = 0, otherwise.

Proof. Result (2.11) shows that if i + I belong to the same row of t d then

^tw^a = a$x<a = Q'bxw ' ancl if the row index of i in t d is less than that of
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i + 1 then <t>dXuTa = d)dXm = <$>dXm, and if the row index of i + 1 in txd is less

than that of i then ¿7fl = qfâ + (q - 1)¿ = qfâ + (q - 1)«¿.

7.18. Lemma. Suppose that u and w £ &r and that tßw is standard. Then for

some integer k, and some s £ M , we have

W <TJw = qk<t>Z+s,and

(ii) s is a linear combination of terms tpXo) (d £ 3X) for which x(t u, tß) >

X(txd,tßw).

Proof. The conclusion of the lemma is correct when w = 1, so assume that

w t¿ 1. Then for some w' £ &r and some a = (i, i + I) £ &r, we have that

w = w'a, and tßw' is standard, and the column index of I + 1 in tßw' is less

than the column index of i in fw' . By induction, we have

/l   t-, t-, k' ,uw'   ,    /

KTuTw' = Q   K   +S >

where k' is an integer and s' is a linear combination of terms <j>Xw  (d £ 3X)

for which x(tXu, tß) > x(tXd, tßw').

We multiply the above equation on the right by Ta . Of course, Tw,Ta-Tw,

so we get <t>\ßTuTw on the left-hand side. We check that every term d)Xo) in

(0*'C' + J') ̂ except C > satisfies X(tXu, f) > xtfd^w).

Consider <t>u¿ Ta . By Lemma 7.17 and result (7.16), <j>¿ Ta = q^lZ+^Z'

and if c ¿ 0 then *(fW, tßw') > x(tXüw', tßw). But xi^uw1, fV)_=

X(tXuw', tßw') = x(tXuy), by results (7.15)(i) and (7.14).   Thus, if </>™'

occurs in the product <j>ux™ Ta then x{tXu, tß) > x^uw', tßw).

Next we turn our attention to s Ta . Suppose that tpXw is one of the terms

in s_. Then x(tXu,tß) > x(tXd, tMw') and from Lemma 7.17, 4>dX(aTa =

tfVÍ>c#L • We have x(tXu, tß) > x(txd, tßw') = x(tXd~a, fw), by applying

results (7.14) and (7.15)(i). If c ¿ 0, then result (7.16) gives x(tXd, fw') >

X(t d, fw), so x(t u, f) > x(t d, fw). The proof of the lemma is now

complete.

7.19. Lemma. Suppose that u £ &r and w £ & ,. Then (f>[uTuTw is a linear

combination of terms 4>Xw  (d £ 3X) for which x(t d, fw ) — x(t u, fw ).

Proof. The proof of this result is similar to the proof of Lemma 7.18, but is

easier. We leave the details to the reader.

Next, we recall some combinatorial definitions and results from [2, §1].

7.20. Definition. If w £ 6r and A £ T(p, X) then let wA £ 3X be defined by

letting txwA be the row-standard A-tableau for which j belongs to row a if the

place occupied by / in fw is occupied by a in A (for all / with 1 < / < r).
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The following results are easy (see [2, 1.7]).

(7.21) The map A i-> lA gives a bijection between T(p, X) and 3X, and

the restriction of this map to the set of row-standard tableau in T(p, X) maps

onto 3Xß.

(7.22) If A, B £ T(p, X) we write A ~ B if A and B are row equivalent.

Then &xlA&ß = UB^A&xlB (disjoint union).

(7.23) If A £ T(p, X) and w £ 6r then wA  is the unique element in

exiAwn3x.
(7.24) If A and B are distinct elements of T(X, p), B is row equivalent

to A, and A is row-standard, then x(flA > ̂ ) > X{f\B > ̂ ) •

(7.25) If ^ and B are distinct elements of TQ(p,X) then #(/, fTJ ^

7.26. Lemma. Suppose that A£ T(p,X) and that A is row-standard. Then for

some integer k, and some s £ M , we have

(i) ^\jWß = ^LTiwß)A+s'and

(ii) s is a linear combination of terms (pXw (d £3X) for which x(tXlA, f) >

X(txd,fwß).

Proof. From result (7.22) we obtain

^XßTßco ~   /  , rX(0 •

B~A

Now, by Lemma 7.18

^    -qk"4,XXcoTT^ + sB,
P op

where kB is an integer and sB is a linear combination of terms 4>X(i} for

which x(tX\B,ñ > x(tXd,fwß). Moreover, x(t\,f) > x(tXlB,f) =

X(tXT~wß , fwß) if B ~ A but B ¿ A , by result (7.24). Hence

where k is an integer and 5 is a linear combination of terms (pXw for which

X(tXlA,f) > x(tXd, fwß). Now, T~wß = (wß)A by result (7.23), so the

lemma is proved.

7.27. Theorem. Suppose that X £ A(«,r) and p Y- r. Then {^>xiz\A £

70(/¿, X)} is a linearly independent subset of Wß n M .

Proof. Suppose that 2^cA4)Xßzß = 0, where cA £ R and the sum is over A £

T0(X, p). Choose D £ T0(X, p) such that cA = 0 for all A with x(f^A , f) >

X(tXlD, f). If we can prove that cD = 0 then it will follow that every coefficient

cA = 0, and we will have finished.



«-TENSOR SPACE AND «-WEYL MODULES 279

By Lemma 7.26 and result (7.25) there exists an integer k and s £ M such

that

Y.CA^XA/ßJWß = CD<ik<Í>\j(w¿D+S,

where s is a linear combination of terms cpXw (d £3X) for which x(t d, fw )

ïx(txiD,f).

Now,

wolj^yj+sy*' = E^-C7^' = o,

and by Lemma 7.19, 4>\mT,w j yß< is a linear combination of terms <j>X(0 (d £

3X) for which X{tXd, fwß) = x(tX(wß)D, fwß) = X(flD, f), while syß,

is a linear combination of terms 4>Xcù (d £ 3X) for which x(f d, fw ) ^

X(txlD, f). Therefore, cDqk<t>xXwT(w^yßl = 0. But 4,7^^ ¿ 0, since

the numbers strictly increase down the columns of D. Therefore, cD = 0, as

we wished to show.

8. The main results

We are now able to show that g-Weyl modules are free as /î-modules, and ex-

hibit a basis. We can also classify the irreducible modules for #-Schur algebras

(when R is a field).

The following two theorems will be proved simultaneously.

8.1. Theorem (the Semistandard Basis Theorem for #-Weyl modules). Suppose

that p\- r. Then the q-Weyl module Wß is free as an R-module and

{<pX/ßzß\X£A(n,r)andA£T0(p,X)}

is a basis. In particular, the rank of Wß is equal to the number of semistandard
p-tableaux.

8.2. Theorem (the Kernel Intersection Theorem for g-Weyl modules). Suppose

that pY-r. Then Wß = Kß .
t

Proof of Theorems 8.1 and 8.2. Assume first that R is a field. We have Kß n

Mx > Wß n Mx by Lemma 4.8. But \T0(p,X)\> dim(Kß' n Mx) by Corollary

7.11 and {<\>Xßzß\A £ TQ(p, X)} is a linearly independent subset of Wß fl Mx

by Theorem 7.27. Therefore, Kß DMX = WßnMx and {<t>\Aßzß\A £ TQ(p, X)}

is a basis of this space. The proof of the theorems in the case where R is a

field is now complete.

Next let R be an integral domain, with quotient field 7 . Let v £ Kß n M .

By extending the ring of coefficients to 7, we can write v = E cA$xßzß > where

cA £ F and the sum is over A £ 7Q(/¿, X). We prove that cA £ R for all A,

by induction on the number of nonzero coefficients cA . We may assume that
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v ^ 0. Choose D e T0(X, p) such that cD ̂  0, but cA - 0 for all A with

Precisely as in the proof of Theorem 7.27, there exists an integer k such that

where s £ M and sy < is a linear combination of terms r^ (d £ 3X) for

which *(/</, i^) ^ xi/lj,, f). Now, if d = (wß)D then *(/</, *"«;„) =

X(tX\D, f) and hence (f>Xw does not occur in sy •. Therefore, for this choice

of d, the coefficient of <pXw in v is cDq . Since v £ SR(n, r), we deduce that

cD£R.

Now, by induction, all the coefficients cA  in v - cD4>Xßz    belong to R.

Hence v £WßnMx and {d>\Aßzß\A £ T0(X, p)} is a basis of WßnMx.

8.3. Corollary. We have WM = /r^) n Lß .

Proof. The corollary follows immediately from Theorem 8.2 and Lemma 7.5.

8.4. Corollary. Assume that q+l ¿0 or p is 2-regular. Then Wß = lr(z ).

Proof. Apply Theorem 6.13 and Corollary 8.3.

8.5. Corollary. Assume that q + l ¿0 or p is 2-regular, and that U is a right

ß?-submodule of q-tensor space. Then Wß n U is canonically isomorphic to

Hom^(Sß , U), as an R-module.

Proof. Apply Lemma 6.3(i) and Corollary 8.4.

By combining Corollary 8.5, Lemma 6.8(ii), and Corollary 8.4, we obtain the

following generalization of a theorem of Carter and Lusztig [1, Theorem 3.7].

8.6. Corollary. Suppose that X, p £ A(«, r). Then there exist canonical R-

injections

H°aiSji(Sjr)(^. w") 7 S" n W" -¿ Hom^S", Sx)

such that

(i) P is an isomorphism, and

(ii) if q + 1 t¿ 0 or p is 2-regular, then Q is an isomorphism.

8.7. Corollary (the Semistandard Homomorphism Theorem). Suppose that X £

A(n, r) and p\-r. Let % denote the set of ß?-homomorphisms from Sß into

Mx which can be extended to an element of Hom^,(A//i, Mx). Then

{<pXx;\A£T0(X,p)}

is a basis for If.   If, in addition,  q + 1 ^ 0 or p  is 2-regular, then f =

Hom^(Sß,MX).

Proof. The corollary follows from Lemma 6.9, Theorem 8.1, and Corollary 8.4.
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8.8. Theorem. Suppose that R is a field. Then {Fß\p\-r} is a complete set of

nonisomorphic irreducible modules for the q-Schur algebra SR(n, r).

Proof. In Corollary 4.11, we proved all parts of the theorem, except that the

given set is complete.

Since every irreducible SR(n, r)-module is a composition factor of ER(n, r),

and ER(n, r) = V ', it is certainly sufficient to prove the following:

(*) If p £ A(«, r) then every composition factor of Lß is isomorphic to

some 7   with X \- r and p > X.

We assume that if p > v  then every composition factor of Lv has the form

F   for some X with v > X. (This assumption is empty if p = (r).)

Since Wß = Kß , all composition factor of Lß/Wß  have the form Fx with

p > X. The contravariant dual of Wß    is isomorphic to Lß/Wß . Now recall

that each Fx is self-dual (see Theorem 4.6). Consider the following picture:

Lß

^W¿ + Wß,±.

wß n wßl±

(0)

We see that the factors of Wß are Fß and some factors 7 with p! > X.

Therefore, every composition factor of Lß has the form F for some X with

p > X. (Consider the series Lß > Wß  > (Wß n WßL) and recall that the
' '  I

factors of Lß/Wß  are the same as those of Wß    .) This completes the proof

of (*), and hence also the proof of the theorem.

8.9. Corollary. Suppose that R is afield, and p £ A(«, r). Then

(i) Every composition factor of Lß has the form Fl for some X \- r with

p > X. The factor Fß   occurs with multiplicity one.

(ii) Every composition factor of Wß < Lß has the form F for some XV- r

and p>X. The factor Fß occurs with multiplicity one.

Proof. The result follows from the theorem and Corollary 4.10.

Finally, we note that if N > n , then we may follow the technique of Green

[5, §6.5] to obtain results for SR(n, r) from the corresponding results for

SR(N, r). In particular, this enables us to deal with the case when « < r.

Briefly, the method is the following. Suppose that N > n. Define the

idempotent e = E^ e SR(N, r), the sum being over all compositions X =

(Xx, X2,... , XN) of r for which Xn+X = ■ ■ • = XN = 0. Then eSR(N, r)e =

SR(n, r), and each SR(N, r)-module U gives us an SR(n , r)-module eU. In

particular, the irreducible SR(n, r)-modules are given by {eF \X\- r and X has

at most « nonzero parts}. Further details can be found in [5].
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