A dense set of operators with tiny commutants
HTML articles powered by AMS MathViewer
- by Domingo A. Herrero
- Trans. Amer. Math. Soc. 327 (1991), 159-183
- DOI: https://doi.org/10.1090/S0002-9947-1991-1022867-8
- PDF | Request permission
Abstract:
For a (bounded linear) operator $T$ on a complex, separable, infinite-dimensional Hilbert space $\mathcal {H}$, let $\mathcal {A} (T)$ and ${\mathcal {A}^a}(T)$ denote the weak closure of the polynomials in $T$ and, respectively, the weak closure of the rational functions with poles outside the spectrum of $T$. Let $\mathcal {A}’(T)$ and $\mathcal {A}''(T)$ denote the commutant and, respectively, the double commutant of $T$. We say that $T$ has a tiny commutant if $\mathcal {A}’(T)= {\mathcal {A}^a}(T)$. By constructing a large family of "models" and by using standard techniques of approximation, it is shown that $T \in \mathcal {L} (\mathcal {H}):T$ has a tiny commutant is norm-dense in the algebra $\mathcal {L} (\mathcal {H})$ of all operators acting on $\mathcal {H}$. Other related results: Let $\operatorname {Lat}\;\mathcal {B}$ denote the invariant subspace lattice of a subalgebra $\mathcal {B}$ of $\mathcal {L}(\mathcal {H})$. For a Jordan curve $\gamma \subset {\mathbf {C}}$, let $\hat \gamma$ denote the union of $\gamma$ and its interior; for $T \in \mathcal {L}\;(\mathcal {H})$, let ${\rho _{s - F}} (T)= \{ \lambda \in {\mathbf {C}}:\lambda - T$ is a semi-Fredholm operator, and let $\rho _{s - F}^ + (T)(\rho _{s - F}^ - (T))= \{ \lambda \in {\rho _{s - F}}(T):{\text {ind}}(\lambda - T) > 0\;(< 0,{\text {resp.)\} }}$. With this notation in mind, it is shown that ${\{ T \in \mathcal {L}(\mathcal {H}):\mathcal {A}(T)= {\mathcal {A}^a}(T)\} ^ - } = {\{ T \in \mathcal {L}(\mathcal {H}):\operatorname {Lat}\;\mathcal {A}(T)= \operatorname {Lat}\;{\mathcal {A}^a}(T)\} ^ - }= \{ A \in \mathcal {L}(\mathcal {H})$ if $\gamma$ (Jordan curve) $\subset \rho _{s - F}^ \pm (A)$, then $\hat \gamma \subset \sigma (A)\}$; moreover, $\{ A \in \mathcal {L}(\mathcal {H})$: if $\gamma$ (Jordan curve) $\subset \rho _{s - F}^ \pm (A)$, then ${\text {ind}}(\lambda - A)$ is constant on $\hat \gamma \cap {\rho _{s - F}}(A)\} \subset {\{ T \in \mathcal {L}(\mathcal {H}):\mathcal {A}(T)= \mathcal {A}’(T)\} ^ - } \subset \{ T \in \mathcal {L}(\mathcal {H}):\operatorname {Lat}\;\mathcal {A}(T)= \operatorname {Lat}\;\mathcal {A}’(T)\} \subset \{ A \in \mathcal {L}(\mathcal {H})$: if $\gamma$ (Jordan curve) $\subset \rho _{s - F}^ \pm (A)$, then $\hat \gamma \cap {\rho _{s - F}}(A) \subset \rho _{s - F}^ \pm (A)\} \subset \{ T \in \mathcal {L}(\mathcal {H}):\mathcal {A}(T)= {\mathcal {A}^a}(T)\}$. (The first and the last inclusions are proper.) The results also include a partial analysis of $\operatorname {Lat}\;\mathcal {A}''(T)$.References
- Constantin Apostol, The correction by compact perturbation of the singular behavior of operators, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 2, 155–175. MR 487559 C. Apostol, L. A. Fialkow, D. A. Herrero, and D. Voiculescu, Approximation of Hilbert space operators, Volume II, Research Notes in Math., vol. 102, Pitman, Boston-London-Melbourne, 1984.
- C. Apostol, C. Pearcy, and N. Salinas, Spectra of compact perturbations of operators, Indiana Univ. Math. J. 26 (1977), no. 2, 345–350. MR 430829, DOI 10.1512/iumj.1977.26.26027
- S. R. Caradus, W. E. Pfaffenberger, and Bertram Yood, Calkin algebras and algebras of operators on Banach spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 9, Marcel Dekker, Inc., New York, 1974. MR 0415345
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Ralph Gellar and Domingo A. Herrero, Hyperinvariant subspaces of bilateral weighted shifts, Indiana Univ. Math. J. 23 (1973/74), 771–790. MR 331083, DOI 10.1512/iumj.1974.23.23065
- G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR 0247039
- Domingo A. Herrero, A Rota universal model for operators with multiply connected spectrum, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 15–23. MR 407628
- Domingo A. Herrero, On multicyclic operators, Integral Equations Operator Theory 1 (1978), no. 1, 57–102. MR 490887, DOI 10.1007/BF01682740
- Domingo A. Herrero, Quasisimilar operators with different spectra, Acta Sci. Math. (Szeged) 41 (1979), no. 1-2, 101–118. MR 534503 —, Approximation of Hilbert space operators, Volume I, Research Notes in Math., vol. 72, Pitman, Boston-London-Melbourne, 1982.
- Domingo A. Herrero, The Fredholm structure of an $n$-multicyclic operator, Indiana Univ. Math. J. 36 (1987), no. 3, 549–566. MR 905610, DOI 10.1512/iumj.1987.36.36030
- Domingo A. Herrero, Economical compact perturbations. II. Filling in the holes, J. Operator Theory 19 (1988), no. 1, 25–42. MR 950823
- Domingo A. Herrero, Similarity and approximation of operators, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988) Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI, 1990, pp. 225–237. MR 1077389, DOI 10.1090/pspum/051.1/1077389 —, A metatheorem on similarity and approximation of operators, J. London Math. Soc. (to appear).
- Domingo A. Herrero and Chun Lan Jiang, Limits of strongly irreducible operators, and the Riesz decomposition theorem, Michigan Math. J. 37 (1990), no. 2, 283–291. MR 1058401, DOI 10.1307/mmj/1029004135
- Domingo Antonio Herrero and Norberto Salinas, Analytically invariant and bi-invariant subspaces, Trans. Amer. Math. Soc. 173 (1972), 117–136. MR 312294, DOI 10.1090/S0002-9947-1972-0312294-9
- Tosio Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261–322. MR 107819, DOI 10.1007/BF02790238
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Gian-Carlo Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469–472. MR 112040, DOI 10.1002/cpa.3160130309
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 27, Springer-Verlag, Berlin-New York, 1970. Second printing. MR 0257800
- A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1970/71), 777–788. MR 287352, DOI 10.1512/iumj.1971.20.20062 B. Sz.-Nagy and C. Foiaş, Analyse, harmonique des opérateurs de l’espace de Hilbert, Akademiai Kaidó, Budapest and Masson, Paris, 1967.
- Dan Voiculescu, Norm-limits of algebraic operators, Rev. Roumaine Math. Pures Appl. 19 (1974), 371–378. MR 343082
- Warren R. Wogen, On cyclicity of commutants, Integral Equations Operator Theory 5 (1982), no. 1, 141–143. MR 646885, DOI 10.1007/BF01694035
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 327 (1991), 159-183
- MSC: Primary 47A99; Secondary 47A15, 47C05, 47D99
- DOI: https://doi.org/10.1090/S0002-9947-1991-1022867-8
- MathSciNet review: 1022867