On the relative reflexivity of finitely generated modules of operators
HTML articles powered by AMS MathViewer
- by Bojan Magajna
- Trans. Amer. Math. Soc. 327 (1991), 221-249
- DOI: https://doi.org/10.1090/S0002-9947-1991-1038017-8
- PDF | Request permission
Abstract:
Let $\mathcal {R}$ be a von Neumann algebra on a Hilbert space $\mathcal {H}$ with commutant $\mathcal {R}’$ and centre $\mathcal {C}$. For each subspace $\mathcal {S}$ of $\mathcal {R}$ let $\operatorname {ref}_\mathcal {R} (\mathcal {S})$ be the space of all $B \in \mathcal {R}$ such that $XBY= 0$ for all $X,Y \in \mathcal {R}$ satisfying $X \mathcal {S} Y = 0$. If $\operatorname {ref}_\mathcal {R} (\mathcal {S})= \mathcal {S}$, the space $\mathcal {S}$ is called $\mathcal {R}$-reflexive. (If $\mathcal {R}= \mathcal {B}(\mathcal {H})$ and $\mathcal {S}$ is an algebra containing the identity operator, $\mathcal {R}$-reflexivity reduces to the usual reflexivity in operator theory.) The main result of the paper is the following: if $\mathcal {S}$ is one-dimensional, or if $\mathcal {S}$ is arbitrary finite-dimensional but $\mathcal {R}$ has no central portions of type ${{\text {I}}_n}$ for $n > 1$, then the space $\overline {\mathcal {C}\mathcal {S}}$ is $\mathcal {R}$-reflexive and the space $\overline {\mathcal {R}’ \mathcal {S}}$ is $\mathcal {B}(\mathcal {H})$-reflexive, where the bar denotes the closure in the ultraweak operator topology. If $\mathcal {R}$ is a factor, then $\mathcal {R}’ \mathcal {S}$ is closed in the weak operator topology for each finite-dimensional subspace $\mathcal {S}$ of $\mathcal {R}$.References
- Charles A. Akemann and Gert K. Pedersen, Ideal perturbations of elements in $C^*$-algebras, Math. Scand. 41 (1977), no. 1, 117–139. MR 473848, DOI 10.7146/math.scand.a-11707
- William Arveson, Interpolation problems in nest algebras, J. Functional Analysis 20 (1975), no. 3, 208–233. MR 0383098, DOI 10.1016/0022-1236(75)90041-5 —, Ten lectures on operator algebras, CBMS Regional Conf. Ser. in Math., no. 55, Amer. Math. Soc., Providence, R. I., 1983.
- Bernard Aupetit, An improvement of Kaplansky’s lemma on locally algebraic operators, Studia Math. 88 (1988), no. 3, 275–278. MR 932016, DOI 10.4064/sm-88-3-275-278
- Edward A. Azoff, On finite rank operators and preannihilators, Mem. Amer. Math. Soc. 64 (1986), no. 357, vi+85. MR 858467, DOI 10.1090/memo/0357
- E. A. Azoff, C. K. Fong, and F. Gilfeather, A reduction theory for non-self-adjoint operator algebras, Trans. Amer. Math. Soc. 224 (1976), no. 2, 351–366 (1977). MR 448109, DOI 10.1090/S0002-9947-1976-0448109-1
- John B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR 768926, DOI 10.1007/978-1-4757-3828-5
- Kenneth R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. Triangular forms for operator algebras on Hilbert space. MR 972978
- P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254–281. MR 293441, DOI 10.1016/S0001-8708(71)80006-3
- C. K. Fong and A. R. Sourour, On the operator identity $\sum \,A_{k}XB_{k}\equiv 0$, Canadian J. Math. 31 (1979), no. 4, 845–857. MR 540912, DOI 10.4153/CJM-1979-080-x
- P. Gajendragadkar, Norm of a derivation on a von Neumann algebra, Trans. Amer. Math. Soc. 170 (1972), 165–170. MR 305090, DOI 10.1090/S0002-9947-1972-0305090-X
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952
- I. N. Herstein, Rings with involution, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1976. MR 0442017 R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, vols. 1, 2, Academic Press, London, 1983, 1986.
- Jon Kraus and David R. Larson, Some applications of a technique for constructing reflexive operator algebras, J. Operator Theory 13 (1985), no. 2, 227–236. MR 775995
- Jon Kraus and David R. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. (3) 53 (1986), no. 2, 340–356. MR 850224, DOI 10.1112/plms/s3-53.2.340
- David R. Larson, On similarity of nests in Hilbert space and in Banach spaces, Functional analysis (Austin, TX, 1986–87) Lecture Notes in Math., vol. 1332, Springer, Berlin, 1988, pp. 179–194. MR 967097, DOI 10.1007/BFb0081620
- David R. Larson, Reflexivity, algebraic reflexivity and linear interpolation, Amer. J. Math. 110 (1988), no. 2, 283–299. MR 935008, DOI 10.2307/2374503
- David R. Larson and Baruch Solel, Nests and inner flows, J. Operator Theory 16 (1986), no. 1, 157–164. MR 847337
- A. N. Loginov and V. S. Šul′man, Hereditary and intermediate reflexivity of $W^*$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 6, 1260–1273, 1437 (Russian). MR 0405124
- Bojan Magajna, A system of operator equations, Canad. Math. Bull. 30 (1987), no. 2, 200–209. MR 889539, DOI 10.4153/CMB-1987-029-2
- Wallace S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584. MR 238897, DOI 10.1016/0021-8693(69)90029-5
- Martin Mathieu, Elementary operators on prime $C^*$-algebras. I, Math. Ann. 284 (1989), no. 2, 223–244. MR 1000108, DOI 10.1007/BF01442873
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- V. S. Šul′man, Reflexive operator algebras, Mat. Sb. (N.S.) 87(129) (1972), 179–187. MR 0298436
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 327 (1991), 221-249
- MSC: Primary 47D25; Secondary 46L10, 47A15, 47C15
- DOI: https://doi.org/10.1090/S0002-9947-1991-1038017-8
- MathSciNet review: 1038017