Control of degenerate diffusions in $\textbf {R}^ d$
HTML articles powered by AMS MathViewer
- by Omar Hijab
- Trans. Amer. Math. Soc. 327 (1991), 427-448
- DOI: https://doi.org/10.1090/S0002-9947-1991-1040262-2
- PDF | Request permission
Abstract:
An optimal regularity result is established for the viscosity solution of the degenerate elliptic equation \[ - Av + F(x,\upsilon ,D\upsilon )= 0,\] $A= \frac {1}{2}\sum {{a_{ij}}(x){\partial ^2}/\partial x{_i} \partial {x_j}}, x \in {{\mathbf {R}}^d}$. We assume the equation is of Bellman type, i.e. $F(x,\upsilon ,p)= {\sup _{u \in U}}[b(x,u) \cdot p + c(x,u)\upsilon - f(x,u)]$, $U \subset {{\mathbf {R}}^d}$. If we set $\lambda \equiv {\inf _{x,u}}c(x,u)$, then there exists ${\lambda _0} \geq 0$ such that $0 < \lambda < {\lambda _0}$ implies $\upsilon$ is Hölder, while $\lambda > {\lambda _0}$ implies $\upsilon$ is Lipschitz. The following is established: Suppose the equation is also of Lipschitz type, i.e. suppose there is a Lipschitz function $u(x,\upsilon ,p)$ such that the supremum in $F (x,\upsilon ,p)$ is uniquely attained at $u= u (x,\upsilon ,p)$; then there exists ${\lambda _1} > {\lambda _0}$ such that $\lambda > {\lambda _1}$ implies $\upsilon$ is ${C^{1,1}},$ i.e. $D\upsilon$ exists and is Lipschitz.References
- Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42. MR 690039, DOI 10.1090/S0002-9947-1983-0690039-8
- Nicole El Karoui, Du’ Hu̇u̇ Nguyen, and Monique Jeanblanc-Picqué, Compactification methods in the control of degenerate diffusions: existence of an optimal control, Stochastics 20 (1987), no. 3, 169–219. MR 878312, DOI 10.1080/17442508708833443
- Wendell H. Fleming and Raymond W. Rishel, Deterministic and stochastic optimal control, Applications of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975. MR 0454768, DOI 10.1007/978-1-4612-6380-7
- U. G. Haussmann, Existence of optimal Markovian controls for degenerate diffusions, Stochastic differential systems (Bad Honnef, 1985) Lect. Notes Control Inf. Sci., vol. 78, Springer, Berlin, 1986, pp. 171–186. MR 903042, DOI 10.1007/BFb0041161
- N. V. Krylov, The control of the solution of a stochastic integral equation, Teor. Verojatnost. i Primenen. 17 (1972), 111–128 (Russian, with English summary). MR 0299322
- N. V. Krylov, Controlled diffusion processes, Applications of Mathematics, vol. 14, Springer-Verlag, New York-Berlin, 1980. Translated from the Russian by A. B. Aries. MR 601776, DOI 10.1007/978-1-4612-6051-6
- P.-L. Lions, Control of diffusion processes in $\textbf {R}^{N}$, Comm. Pure Appl. Math. 34 (1981), no. 1, 121–147. MR 600574, DOI 10.1002/cpa.3160340106
- P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. I. The dynamic programming principle and applications, Comm. Partial Differential Equations 8 (1983), no. 10, 1101–1174. MR 709164, DOI 10.1080/03605308308820297
- P.-L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. I. The case of bounded stochastic evolutions, Acta Math. 161 (1988), no. 3-4, 243–278. MR 971797, DOI 10.1007/BF02392299
- Makiko Nisio, Some remarks on stochastic optimal controls, Proceedings of the Third Japan-USSR Symposium on Probability Theory (Tashkent, 1975) Lecture Notes in Math., Vol. 550, Springer, Berlin, 1975, pp. 446–460. MR 0439373
- Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 327 (1991), 427-448
- MSC: Primary 35B65; Secondary 35B37, 35J60, 93C20
- DOI: https://doi.org/10.1090/S0002-9947-1991-1040262-2
- MathSciNet review: 1040262