Flowbox manifolds
HTML articles powered by AMS MathViewer
- by J. M. Aarts and L. G. Oversteegen
- Trans. Amer. Math. Soc. 327 (1991), 449-463
- DOI: https://doi.org/10.1090/S0002-9947-1991-1042286-8
- PDF | Request permission
Abstract:
A separable and metrizable space $X$ is called a flowbox manifold if there exists a base for the open sets each of whose elements has a product structure with the reals $\operatorname {Re}$ as a factor such that a natural consistency condition is met. We show how flowbox manifolds can be divided into orientable and nonorientable ones. We prove that a space $X$ is an orientable flowbox manifold if and only if $X$ can be endowed with the structure of a flow without restpoints. In this way we generalize Whitney’s theory of regular families of curves so as to include self-entwined curves in general separable metric spaces. All spaces under consideration are separable and metrizable.References
- J. M. Aarts, The structure of orbits in dynamical systems, Fund. Math. 129 (1988), no. 1, 39–58. MR 954894, DOI 10.4064/fm-129-1-39-58
- J. M. Aarts, Orientation of orbits in flows, Papers on general topology and related category theory and topological algebra (New York, 1985/1987) Ann. New York Acad. Sci., vol. 552, New York Acad. Sci., New York, 1989, pp. 1–7. MR 1020768, DOI 10.1111/j.1749-6632.1989.tb22380.x
- J. M. Aarts and M. Martens, Flows on one-dimensional spaces, Fund. Math. 131 (1988), no. 1, 53–67. MR 970914, DOI 10.4064/fm-131-1-53-67
- J. M. Aarts, C. L. Hagopian, and L. G. Oversteegen, The orientability of matchbox manifolds, Pacific J. Math. 150 (1991), no. 1, 1–12. MR 1120708
- David H. Carlson, A generalization of Vinograd’s theorem for dynamical systems, J. Differential Equations 11 (1972), 193–201. MR 289891, DOI 10.1016/0022-0396(72)90089-7
- W. C. Chewning, A dynamical system on $E^{4}$ neither isomorphic nor equivalent to a differential system, Bull. Amer. Math. Soc. 80 (1974), 150–153. MR 326781, DOI 10.1090/S0002-9904-1974-13396-3 C. Camacho and A. L. Neto, Geometric theory of foliations, Birkhäuser, Basel, 1985.
- Andrzej Gutek, On compact spaces which are locally Cantor bundles, Fund. Math. 108 (1980), no. 1, 27–31. MR 585557, DOI 10.4064/fm-108-1-27-31
- Otomar Hájek, Dynamical systems in the plane, Academic Press, London-New York, 1968. MR 0240418
- Otomar Hájek, Local characterisation of local semi-dynamical systems, Math. Systems Theory 2 (1968), 17–25. MR 239575, DOI 10.1007/BF01691343
- Michael W. Mislove and James T. Rogers Jr., Local product structures on homogeneous continua, Topology Appl. 31 (1989), no. 3, 259–267. MR 997493, DOI 10.1016/0166-8641(89)90022-9
- Sam B. Nadler Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions. MR 0500811
- V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, Princeton Mathematical Series, No. 22, Princeton University Press, Princeton, N.J., 1960. MR 0121520
- Taro Ura, Isomorphism and local characterization of local dynamical systems, Funkcial. Ekvac. 12 (1969), 99–122. MR 259886
- Hassler Whitney, Regular families of curves, Ann. of Math. (2) 34 (1933), no. 2, 244–270. MR 1503106, DOI 10.2307/1968202
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 327 (1991), 449-463
- MSC: Primary 54H20; Secondary 54E99
- DOI: https://doi.org/10.1090/S0002-9947-1991-1042286-8
- MathSciNet review: 1042286