First steps in descriptive theory of locales
HTML articles powered by AMS MathViewer
- by John Isbell
- Trans. Amer. Math. Soc. 327 (1991), 353-371
- DOI: https://doi.org/10.1090/S0002-9947-1991-1091230-6
- PDF | Request permission
Correction: Trans. Amer. Math. Soc. 341 (1994), 467-468.
Abstract:
F. Hausdorff and D. Montgomery showed that a subspace of a completely metrizable space is developable if and only if it is ${F_\sigma }$ and ${G_\delta }$. This extends to arbitrary metrizable locales when "${F_\sigma }$" and "${G_\delta }$" are taken in the localic sense (countable join of closed, resp. meet of open, sublocales). In any locale, the developable sublocales are exactly the complemented elements of the lattice of sublocales. The main further results of this paper concern the strictly pointless relative theory, which exists because—always in metrizable locales— there exist nonzero pointless-absolute ${G_\delta }’{\text {s}}$, ${G_\delta }$ in every pointless extension. For instance, the pointless part ${\text {pl}}({\mathbf {R}})$ of the real line is characterized as the only nonzero zero-dimensional separable metrizable pointless-absolute ${G_\delta }$. There is no nonzero pointless-absolute ${F_\sigma }$. The pointless part of any metrizable space is, if not zero, second category, i.e. not a countable join of nowhere dense sublocales.References
- P. S. Alexandroff and P. S. Urysohn, Nulldimensionale Punktmengen, Math. Ann. 98 (1927), 89-106.
- C. H. Dowker, Local dimension of normal spaces, Quart. J. Math. Oxford Ser. (2) 6 (1955), 101–120. MR 86286, DOI 10.1093/qmath/6.1.101
- Anthony W. Hager, Isomorphisms of some completions of $C(X)$, Topology Proc. 4 (1979), no. 2, 407–435 (1980). MR 598284
- John R. Isbell, Atomless parts of spaces, Math. Scand. 31 (1972), 5–32. MR 358725, DOI 10.7146/math.scand.a-11409
- John R. Isbell, Function spaces and adjoints, Math. Scand. 36 (1975), no. 2, 317–339. MR 405340, DOI 10.7146/math.scand.a-11581
- J. Isbell, Graduation and dimension in locales, Aspects of topology, London Math. Soc. Lecture Note Ser., vol. 93, Cambridge Univ. Press, Cambridge, 1985, pp. 195–210. MR 787829
- John Isbell, $d$-final continua, Proc. Amer. Math. Soc. 104 (1988), no. 3, 953–964. MR 964879, DOI 10.1090/S0002-9939-1988-0964879-1
- Peter T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074 —, Fibrewise separation axioms for locales, preprint. K. Kuratowski, Topologie, vol. I, 4th ed., Warsaw, 1958. D. Montgomery, Non-separable metric spaces, Fund. Math. 25 (1935), 527-534.
- S. B. Niefield and K. I. Rosenthal, Spatial sublocales and essential primes, Topology Appl. 26 (1987), no. 3, 263–269. MR 904472, DOI 10.1016/0166-8641(87)90046-0
- Walter Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39–42. MR 85475, DOI 10.1090/S0002-9939-1957-0085475-7
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 327 (1991), 353-371
- MSC: Primary 54H05; Secondary 03G30, 18B35
- DOI: https://doi.org/10.1090/S0002-9947-1991-1091230-6
- MathSciNet review: 1091230