Stable rank and approximation theorems in $H^ \infty$
HTML articles powered by AMS MathViewer
- by Leonardo A. Laroco
- Trans. Amer. Math. Soc. 327 (1991), 815-832
- DOI: https://doi.org/10.1090/S0002-9947-1991-1012513-1
- PDF | Request permission
Abstract:
It is conjectured that for ${H^\infty }$ the Bass stable rank $(\text {bsr})$ is $1$ and the topological stable rank $(\text {tsr})$ is $2$. ${\text {bsr}}({H^\infty })= 1$ if and only if for every $({f_1},{f_2})\; \in {H^\infty } \times {H^\infty }$ which is a corona pair (i.e., there exist ${g_{1}}$, ${g_2} \in {H^\infty }$ such that ${f_1}{g_1} + {f_2}{g_2}= 1$) there exists a $g \in {H^\infty }$ such that ${f_1} + {f_2}g \in {({H^\infty })^{ - 1}}$, the invertibles in ${H^\infty }$; however, it suffices to consider corona pairs $({f_1},{f_2})$ where ${f_1}$ is a Blaschke product. It is also shown that there exists a $g \in {H^\infty }$ such that ${f_1} + {f_2}g \in \exp ({H^\infty })$ if and only if $\log {f_1}$ can be boundedly, analytically defined on $\{ {z \in \mathbb {D}:| {f_2}(z)| < \delta } \}$, for some $\delta > 0$. ${\text {tsr}}({H^\infty })= 2$ if and only if the corona pairs are uniformly dense in ${H^\infty } \times {H^\infty }$; however, it suffices to show that the corona pairs are uniformly dense in pairs of Blaschke products. This condition would be satisfied if the interpolating Blaschke products were uniformly dense in the Blaschke products. For $b$ an inner function, $K= {H^2} \ominus b {H^2}$ is an ${H^\infty }$-module via the compressed Toeplitz operators ${C_f}= {P_K}{T_f}{|_K}$, for $f \in {H^\infty }$, where ${T_f}$ is the Toeplitz operator ${T_f}g= f g$, for $g \in {H^2}$. Some stable rank questions can be recast as lifting questions: for $({f_i})_1^n \subset {H^\infty }$, there exist $({g_i})_1^n$, $({h_i})_1^n \subset {H^\infty }$ such that $\sum \nolimits _{i = 1}^n {({f_i} + b {g_i}){h_i}= 1}$ if and only if the compressed Toeplitz operators $({C_{{f_i}}})_1^n$ may be lifted to Toeplitz operators $({T_{{F_i}}})_1^n$ which generate $B({H^2})$ as an ideal.References
- H. Bass, $K$-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 5–60. MR 174604, DOI 10.1007/BF02684689
- Lennart Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930. MR 117349, DOI 10.2307/2372840
- Lennart Carleson, The corona theorem, Proceedings of the Fifteenth Scandinavian Congress (Oslo, 1968) Lecture Notes in Mathematics, Vol. 118, Springer, Berlin, 1970, pp. 121–132. MR 0264100
- S. Y. Chang and D. E. Marshall, Some algebras of bounded analytic functions containing the disk algebra, Banach spaces of analytic functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio, 1976) Lecture Notes in Math., Vol. 604, Springer, Berlin, 1977, pp. 12–20. MR 0463925
- Gustavo Corach and Angel R. Larotonda, Stable range in Banach algebras, J. Pure Appl. Algebra 32 (1984), no. 3, 289–300. MR 745359, DOI 10.1016/0022-4049(84)90093-8
- Gustavo Corach and Angel R. Larotonda, Unimodular matrices in Banach algebra theory, Proc. Amer. Math. Soc. 96 (1986), no. 3, 473–477. MR 822443, DOI 10.1090/S0002-9939-1986-0822443-7
- Gustavo Corach and Fernando Daniel Suárez, Extension problems and stable rank in commutative Banach algebras, Topology Appl. 21 (1985), no. 1, 1–8. MR 808718, DOI 10.1016/0166-8641(85)90052-5
- Gustavo Corach and Fernando Daniel Suárez, Stable rank in holomorphic function algebras, Illinois J. Math. 29 (1985), no. 4, 627–639. MR 806470
- Gustavo Corach and Fernando Daniel Suárez, On the stable range of uniform algebras and $H^\infty$, Proc. Amer. Math. Soc. 98 (1986), no. 4, 607–610. MR 861760, DOI 10.1090/S0002-9939-1986-0861760-1
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Richard H. Herman and Leonid N. Vaserstein, The stable range of $C^{\ast }$-algebras, Invent. Math. 77 (1984), no. 3, 553–555. MR 759256, DOI 10.1007/BF01388839
- P. W. Jones, D. Marshall, and T. Wolff, Stable rank of the disc algebra, Proc. Amer. Math. Soc. 96 (1986), no. 4, 603–604. MR 826488, DOI 10.1090/S0002-9939-1986-0826488-2
- A. Kerr-Lawson, Some lemmas on interpolating Blaschke products and a correction, Canadian J. Math. 21 (1969), 531–534. MR 247102, DOI 10.4153/CJM-1969-060-2 J. Nagata, Modern dimension theory, North-Holland, Amsterdam, 1965.
- N. K. Nikol′skiĭ, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223, DOI 10.1007/978-3-642-70151-1
- Marc A. Rieffel, Dimension and stable rank in the $K$-theory of $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333. MR 693043, DOI 10.1112/plms/s3-46.2.301
- L. N. Vaseršteĭn, The stable range of rings and the dimension of topological spaces, Funkcional. Anal. i Priložen. 5 (1971), no. 2, 17–27 (Russian). MR 0284476
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 327 (1991), 815-832
- MSC: Primary 46J15; Secondary 30H05, 46M20, 47B99
- DOI: https://doi.org/10.1090/S0002-9947-1991-1012513-1
- MathSciNet review: 1012513