Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A multidimensional Wiener-Wintner theorem and spectrum estimation
HTML articles powered by AMS MathViewer

by John J. Benedetto PDF
Trans. Amer. Math. Soc. 327 (1991), 833-852 Request permission

Abstract:

Sufficient conditions are given for a bounded positive measure $\mu$ on ${\mathbb {R}^d}$ to be the power spectrum of a function $\varphi$. Applications to spectrum estimation are made for the cases in which a signal $\varphi$ is known or its autocorrelation ${P_\phi }$ is known. In the first case, it is shown that \[ \int {|\hat f(\gamma )|^2}d{\mu _\phi }(\gamma )= \lim \limits _{R \to \infty } \frac {1}{|B(R )|} \int _{B(R)} |f \ast \varphi (t)|^2\;dt,\] where ${\hat P}_{\varphi }= {\mu _\varphi }$, $B(R)$ is the $d$-dimensional ball of radius $R$, and $f$ ranges through a prescribed function space. In the second case, an example, which is a variant of the Tomas-Stein restriction theorem, is \[ \forall f \in {L^1}({\mathbb {R}^d}) \cap {L^p}({\mathbb {R}^d}), \\ \left (\int _{\sum _{d - 1}} | \hat f(\theta )|^2 d {\mu _{d - 1}}(\theta ) \right )^{1/2} \leq \left (\frac {1}{2}\parallel \mu _{d - 1}^{\vee } \parallel _{p’}^{1/2} \right )\;\left (\parallel f {\parallel _{1}} + \parallel f{\parallel _{p}} \right ),\] where $1 \leq p < 2d/(d + 1)$ and the power spectrum ${\mu _{d - 1}}$ is the compactly supported restriction of surface measure to the unit sphere $\sum \nolimits _{d - 1} { \subseteq } \;{{\hat {\mathbb {R}}}^d}$.
References
    J. Bass, Fonctions de corrélation fonctions pseudo-aléatoires et applications, Masson, Paris, 1984.
  • John J. Benedetto, Spectral synthesis, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1975. MR 0622037
  • John J. Benedetto and Hans Heinig, Fourier transform inequalities with measure weights, Adv. Math. 96 (1992), no. 2, 194–225. MR 1196988, DOI 10.1016/0001-8708(92)90055-P
  • Jean-Paul Bertrandias, Espaces de fonctions bornées et continues en moyenne asymptotique d’ordre $p$, Bull. Soc. Math. France Mém. 5 (1966), 106 (French). MR 196411
  • N. Bourbaki, Intégration, Livre VI, Hermann, Paris, 1952.
  • Katherine Michelle Davis and Yang-Chun Chang, Lectures on Bochner-Riesz means, London Mathematical Society Lecture Note Series, vol. 114, Cambridge University Press, Cambridge, 1987. MR 921849, DOI 10.1017/CBO9781107325654
  • G. Letac, Intégration et probabilités. Analyse de Fourier et analyse spectrale, Collection Maîtrise de Mathématiques Pures. [Collection of Pure Mathematics for the Master’s Degree], Masson, Paris, 1982 (French). Exercices. [Exercises]. MR 686271
  • Yves Meyer, Le spectre de Wiener, Studia Math. 27 (1966), 189–201 (French). MR 203355, DOI 10.4064/sm-27-2-189-201
  • E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. MR 864375
  • Peter A. Tomas, Restriction theorems for the Fourier transform, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–114. MR 545245
  • Norbert Wiener, Collected works. Vol. I, Mathematicians of Our Time, vol. 10, MIT Press, Cambridge, Mass.-London, 1976. Mathematical philosophy and foundations; potential theory; Brownian movement, Wiener integrals, ergodic and chaos theories, turbulence and statistical mechanics; With commentaries; Edited by P. Masani. MR 0532698
  • N. Wiener and A. Wintner, On singular distributions, J. Math. Phys. 17 (1939), 233-246 (Collected Works, Vol. II, P. Masani, Ed.).
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B10
  • Retrieve articles in all journals with MSC: 42B10
Additional Information
  • © Copyright 1991 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 327 (1991), 833-852
  • MSC: Primary 42B10
  • DOI: https://doi.org/10.1090/S0002-9947-1991-1013327-9
  • MathSciNet review: 1013327