A multidimensional Wiener-Wintner theorem and spectrum estimation
HTML articles powered by AMS MathViewer
- by John J. Benedetto
- Trans. Amer. Math. Soc. 327 (1991), 833-852
- DOI: https://doi.org/10.1090/S0002-9947-1991-1013327-9
- PDF | Request permission
Abstract:
Sufficient conditions are given for a bounded positive measure $\mu$ on ${\mathbb {R}^d}$ to be the power spectrum of a function $\varphi$. Applications to spectrum estimation are made for the cases in which a signal $\varphi$ is known or its autocorrelation ${P_\phi }$ is known. In the first case, it is shown that \[ \int {|\hat f(\gamma )|^2}d{\mu _\phi }(\gamma )= \lim \limits _{R \to \infty } \frac {1}{|B(R )|} \int _{B(R)} |f \ast \varphi (t)|^2\;dt,\] where ${\hat P}_{\varphi }= {\mu _\varphi }$, $B(R)$ is the $d$-dimensional ball of radius $R$, and $f$ ranges through a prescribed function space. In the second case, an example, which is a variant of the Tomas-Stein restriction theorem, is \[ \forall f \in {L^1}({\mathbb {R}^d}) \cap {L^p}({\mathbb {R}^d}), \\ \left (\int _{\sum _{d - 1}} | \hat f(\theta )|^2 d {\mu _{d - 1}}(\theta ) \right )^{1/2} \leq \left (\frac {1}{2}\parallel \mu _{d - 1}^{\vee } \parallel _{p’}^{1/2} \right )\;\left (\parallel f {\parallel _{1}} + \parallel f{\parallel _{p}} \right ),\] where $1 \leq p < 2d/(d + 1)$ and the power spectrum ${\mu _{d - 1}}$ is the compactly supported restriction of surface measure to the unit sphere $\sum \nolimits _{d - 1} { \subseteq } \;{{\hat {\mathbb {R}}}^d}$.References
- J. Bass, Fonctions de corrélation fonctions pseudo-aléatoires et applications, Masson, Paris, 1984.
- John J. Benedetto, Spectral synthesis, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1975. MR 0622037
- John J. Benedetto and Hans Heinig, Fourier transform inequalities with measure weights, Adv. Math. 96 (1992), no. 2, 194–225. MR 1196988, DOI 10.1016/0001-8708(92)90055-P
- Jean-Paul Bertrandias, Espaces de fonctions bornées et continues en moyenne asymptotique d’ordre $p$, Bull. Soc. Math. France Mém. 5 (1966), 106 (French). MR 196411 N. Bourbaki, Intégration, Livre VI, Hermann, Paris, 1952.
- Katherine Michelle Davis and Yang-Chun Chang, Lectures on Bochner-Riesz means, London Mathematical Society Lecture Note Series, vol. 114, Cambridge University Press, Cambridge, 1987. MR 921849, DOI 10.1017/CBO9781107325654
- G. Letac, Intégration et probabilités. Analyse de Fourier et analyse spectrale, Collection Maîtrise de Mathématiques Pures. [Collection of Pure Mathematics for the Master’s Degree], Masson, Paris, 1982 (French). Exercices. [Exercises]. MR 686271
- Yves Meyer, Le spectre de Wiener, Studia Math. 27 (1966), 189–201 (French). MR 203355, DOI 10.4064/sm-27-2-189-201
- E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. MR 864375
- Peter A. Tomas, Restriction theorems for the Fourier transform, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–114. MR 545245
- Norbert Wiener, Collected works. Vol. I, Mathematicians of Our Time, vol. 10, MIT Press, Cambridge, Mass.-London, 1976. Mathematical philosophy and foundations; potential theory; Brownian movement, Wiener integrals, ergodic and chaos theories, turbulence and statistical mechanics; With commentaries; Edited by P. Masani. MR 0532698 N. Wiener and A. Wintner, On singular distributions, J. Math. Phys. 17 (1939), 233-246 (Collected Works, Vol. II, P. Masani, Ed.).
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 327 (1991), 833-852
- MSC: Primary 42B10
- DOI: https://doi.org/10.1090/S0002-9947-1991-1013327-9
- MathSciNet review: 1013327