Derived functors of unitary highest weight modules at reduction points
HTML articles powered by AMS MathViewer
- by Pierluigi Möseneder Frajria
- Trans. Amer. Math. Soc. 327 (1991), 703-738
- DOI: https://doi.org/10.1090/S0002-9947-1991-1024771-8
- PDF | Request permission
Abstract:
The derived functors introduced by Zuckerman are applied to the unitary highest weight modules of the Hermitian symmetric pairs of classical type. The construction yields "small" unitary representations which do not have a highest weight. The infinitesimal character parameter of the modules we consider is such that their derived functors are nontrivial in more than one degree; at the extreme degrees where the cohomology is nonvanishing, it is possible to determine the ${\mathbf {K}}$-spectrum of the resulting representations completely. Using this information it is shown that, in most cases, the derived functor modules are unitary, irreducible, and not of highest weight type. Their infinitesimal character and lowest ${\mathbf {K}}$-type are also easily computed.References
- Dan Barbasch, The unitary dual for complex classical Lie groups, Invent. Math. 96 (1989), no. 1, 103–176. MR 981739, DOI 10.1007/BF01393972
- Jacques Dixmier, Cours de mathématiques du premier cycle, Cahiers Scientifiques, Fasc. 30, Gauthier-Villars, Paris, 1976. Première année; Deuxième édition; Avec la collaboration de Pierre Dugac. MR 0446773
- T. J. Enright and N. R. Wallach, Notes on homological algebra and representations of Lie algebras, Duke Math. J. 47 (1980), no. 1, 1–15. MR 563362
- Thomas Enright, Roger Howe, and Nolan Wallach, A classification of unitary highest weight modules, Representation theory of reductive groups (Park City, Utah, 1982) Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 97–143. MR 733809
- T. J. Enright, R. Parthasarathy, N. R. Wallach, and J. A. Wolf, Unitary derived functor modules with small spectrum, Acta Math. 154 (1985), no. 1-2, 105–136. MR 772433, DOI 10.1007/BF02392820
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- Harish-Chandra, Representations of semisimple Lie groups. VI. Integrable and square-integrable representations, Amer. J. Math. 78 (1956), 564–628. MR 82056, DOI 10.2307/2372674
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Jens C. Jantzen, Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren, Math. Ann. 226 (1977), no. 1, 53–65. MR 439902, DOI 10.1007/BF01391218
- Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR 552943
- Wilfried Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969/70), 61–80 (German). MR 259164, DOI 10.1007/BF01389889 D. A. Vogan, Jr., Representations of real reductive Lie groups, Birkhäuser, Boston, Mass., 1981.
- David A. Vogan Jr., The unitary dual of $\textrm {GL}(n)$ over an Archimedean field, Invent. Math. 83 (1986), no. 3, 449–505. MR 827363, DOI 10.1007/BF01394418
- David A. Vogan Jr., Unitarizability of certain series of representations, Ann. of Math. (2) 120 (1984), no. 1, 141–187. MR 750719, DOI 10.2307/2007074
- Nolan R. Wallach, The analytic continuation of the discrete series. I, II, Trans. Amer. Math. Soc. 251 (1979), 1–17, 19–37. MR 531967, DOI 10.1090/S0002-9947-1979-0531967-2
- Nolan R. Wallach, On the unitarizability of derived functor modules, Invent. Math. 78 (1984), no. 1, 131–141. MR 762359, DOI 10.1007/BF01388720
- Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
- Gregg Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math. (2) 106 (1977), no. 2, 295–308. MR 457636, DOI 10.2307/1971097
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 327 (1991), 703-738
- MSC: Primary 22E47; Secondary 22E46
- DOI: https://doi.org/10.1090/S0002-9947-1991-1024771-8
- MathSciNet review: 1024771