Terms in the Selberg trace formula for $\textrm {SL}(3,{\scr Z})\backslash \textrm {SL}(3,{\scr R})/\textrm {SO}(3,{\scr R})$ associated to Eisenstein series coming from a minimal parabolic subgroup
HTML articles powered by AMS MathViewer
- by D. I. Wallace
- Trans. Amer. Math. Soc. 327 (1991), 781-793
- DOI: https://doi.org/10.1090/S0002-9947-1991-1031979-4
- PDF | Request permission
Abstract:
In this paper we compute the contribution to the trace formula for $SL(3,\mathcal {Z})$ of the integrals associated to inner products of Eisenstein series. We show these reduce to corresponding integrals for a lower rank trace formula plus a few residual terms.References
- James Arthur, On a family of distributions obtained from Eisenstein series. I. Application of the Paley-Wiener theorem, Amer. J. Math. 104 (1982), no.ย 6, 1243โ1288. MR 681737, DOI 10.2307/2374061
- James Arthur, On a family of distributions obtained from Eisenstein series. II. Explicit formulas, Amer. J. Math. 104 (1982), no.ย 6, 1289โ1336. MR 681738, DOI 10.2307/2374062
- I. M. Gelโฒfand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969. Translated from the Russian by K. A. Hirsch. MR 0233772
- R. P. Langlands, Eisenstein series, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp.ย 235โ252. MR 0249539
- K. Imai and A. Terras, The Fourier expansion of Eisenstein series for $\textrm {GL}(3,\,\textbf {Z})$, Trans. Amer. Math. Soc. 273 (1982), no.ย 2, 679โ694. MR 667167, DOI 10.1090/S0002-9947-1982-0667167-5
- D. I. Wallace, Maximal parabolic terms in the Selberg trace formula for $\textrm {SL}(3,\textbf {Z})\backslash \textrm {SL}(3,\textbf {R})/\textrm {SO}(3,\textbf {R})$, J. Number Theory 29 (1988), no.ย 2, 101โ117. MR 945590, DOI 10.1016/0022-314X(88)90095-9
- D. I. Wallace, Minimal parabolic terms in the Selberg trace formula for $\textrm {SL}(3,\textbf {Z})\backslash \textrm {SL}(3,\textbf {R})/\textrm {SO}(3,\textbf {R})$, J. Number Theory 32 (1989), no.ย 1, 1โ13. MR 1002111, DOI 10.1016/0022-314X(89)90094-2
- D. I. Wallace, Terms in the Selberg trace formula for $\textrm {SL}(3,\textbf {Z})\backslash \textrm {SL}(3,\textbf {R})/\textrm {SO}(3,\textbf {R})$ associated to Eisenstein series coming from a maximal parabolic subgroup, Proc. Amer. Math. Soc. 106 (1989), no.ย 4, 875โ883. MR 963577, DOI 10.1090/S0002-9939-1989-0963577-9 A. B. Venkov, The Selberg trace formula for $SL\,(3,\mathcal {Z})$, Zap. Nauchn. Sem. (LOMI) 37 (1973).
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 327 (1991), 781-793
- MSC: Primary 11F72
- DOI: https://doi.org/10.1090/S0002-9947-1991-1031979-4
- MathSciNet review: 1031979