Isotopy invariants of graphs
HTML articles powered by AMS MathViewer
- by D. Jonish and K. C. Millett
- Trans. Amer. Math. Soc. 327 (1991), 655-702
- DOI: https://doi.org/10.1090/S0002-9947-1991-1062189-2
- PDF | Request permission
Abstract:
The development of oriented and semioriented algebraic invariants associated to a class of embeddings of regular four valent graphs is given. These generalize the analogous invariants for classical knots and links, can be determined from them by means of a weighted averaging process, and define them by means of a new state model. This development includes the elucidation of the elementary spatial equivalences (generalizations of the classical Reidemeister moves), and the extension of fundamental concepts in classical knot theory, such as the linking number, to this class spatial graphs.References
- J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), no. 2, 275–306. MR 1501429, DOI 10.1090/S0002-9947-1928-1501429-1 —, A matrix knot invariant, Proc. Nat. Acad. Sci. U.S.A. 19 (1933), 272-275.
- Robert D. Brandt, W. B. R. Lickorish, and Kenneth C. Millett, A polynomial invariant for unoriented knots and links, Invent. Math. 84 (1986), no. 3, 563–573. MR 837528, DOI 10.1007/BF01388747
- Gerhard Burde and Heiner Zieschang, Knots, De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1985. MR 808776
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014
- P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 239–246. MR 776477, DOI 10.1090/S0273-0979-1985-15361-3 C. F. Ho, A new polynomial for knots and links—preliminary report, Abstracts Amer. Math. Soc. 6 (1985). Abstract 821-57-16.
- Jim Hoste, A polynomial invariant of knots and links, Pacific J. Math. 124 (1986), no. 2, 295–320. MR 856165
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI 10.2307/1971403
- David P. Jonish and Kenneth C. Millett, Extrinsic topological chirality indices of molecular graphs, Graph theory and topology in chemistry (Athens, Ga., 1987) Stud. Phys. Theoret. Chem., vol. 51, Elsevier, Amsterdam, 1987, pp. 82–90. MR 941549 L. Kauffman, On knots, Ann. of Math. Stud., no. 115, Princeton Univ. Press, 1987.
- Louis H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), no. 2, 417–471. MR 958895, DOI 10.1090/S0002-9947-1990-0958895-7
- Louis H. Kauffman, Invariants of graphs in three-space, Trans. Amer. Math. Soc. 311 (1989), no. 2, 697–710. MR 946218, DOI 10.1090/S0002-9947-1989-0946218-0
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7 L. Kauffman and P. Vogel, Link polynomials and graphical calculus, preprint, 1987.
- W. B. R. Lickorish and Kenneth C. Millett, A polynomial invariant of oriented links, Topology 26 (1987), no. 1, 107–141. MR 880512, DOI 10.1016/0040-9383(87)90025-5
- Andrew S. Lipson, Some more states models for link invariants, Pacific J. Math. 152 (1992), no. 2, 337–346. MR 1141800 K. C. Millett, Configuration census, topological chirality and the new combinatorial invariants, Proc. Internat. Sympos. on Applications of Mathematical Concepts to Chemistry, Croatica Chemica Acta, 59 (1986), 669-684.
- Kenneth C. Millett, Stereotopological indices for a family of chemical graphs, J. Comput. Chem. 8 (1987), no. 4, 536–548. MR 892422, DOI 10.1002/jcc.540080434 A. Ocneanu, A polynomial invariant for knots: a combinatorial and an algebraic approach, preprint.
- Józef H. Przytycki and PawełTraczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1988), no. 2, 115–139. MR 945888 K. Reidemeister, Knotentheorie (reprint 1948), Chelsea, New York, [English transl., Knot theory, BSC Associates, Moscow, Idaho, 1983.]
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972. MR 0350744
- V. G. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), no. 3, 527–553. MR 939474, DOI 10.1007/BF01393746
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 327 (1991), 655-702
- MSC: Primary 57M25; Secondary 05C10
- DOI: https://doi.org/10.1090/S0002-9947-1991-1062189-2
- MathSciNet review: 1062189